
August 22, 2006

Porting SCO OpenServer 5
Applications to Release 6

©Copyright 2003-2005 The SCO Group, Inc. All rights reserved.
©Copyright 1976-2003 Caldera International, Inc. All rights reserved.

This publication is protected under copyright laws and international treaties.

Information in this document is subject to change without notice and does not represent a commitment
on the part of The SCO Group, Inc.

The SCO logos, SCO OpenServer, SCO Open Server and Skunkware are trademarks or registered
trademarks of The SCO Group, Inc. in the USA and other countries. UNIX and UnixWare are used
pursuant to an exclusive license with The Open Group and are registered trademarks of The Open
Group in the United States and other countries. X/Open and UNIX are registered trademarks and the X
Device is a trademark of The Open Group in the United States and other countries. All other brand and
product names are or may be trademarks of, and are used to identify products or services of, their
respective owners. The SCO Group, Inc. reserves the right to change or modify any of the product or
service specifications or features described herein without notice. This document is for information
only. The SCO Group, Inc. makes no express or implied representations or warranties in this docu-
ment.

The software that accompanies this publication is commercial computer software and, together with
any related documentation, is subject to the restrictions on US Government use as set forth below. If
this procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: When licensed to a U.S., State, or Local Government, all Soft-
ware produced by The SCO Group, Inc., is commercial computer software as defined in FAR 12.212,
and has been developed exclusively at private expense. All technical data, or The SCO Group, Inc.,
commercial computer software/documentation is subject to the provisions of FAR 12.211 - "Technical
Data", and FAR 12.212 - "Computer Software" respectively, or clauses providing The SCO Group,
Inc., equivalent protections in DFARS or other agency specific regulations. Manufacturer: The SCO
Group, Inc., 355 South 520 West, Suite 100, Lindon, Utah 84042 USA

Document Version: SCO OpenServer Release 6.0.0

September 2005

 1

Contents
Porting SCO OpenServer 5

Applications to SCO OpenServer 6 5
About porting SCO OpenServer 5 applications 5

Compiler ABI modes: UDK and OSR5 5
Mixed mode issues 6

Tool sets supported 7
Compiler option guidelines 7
API issues 8
C language dialect issues 9
C++ language dialect issues 9
Changes to the runtime environment 11

Console Display Problems 11
Device information 12
Runtime commands 13
Runtime access of system/data files 13
NETbios/NETbeui 13
XENIX 286 emulators 13

Binary debugging 13
Tracing system calls with truss 14
Using the dynamic library tracing feature of the runtime linker 15
Memory debugging with memtool 19
Source debugging with debug 22

Development System documentation 22

Kernel and API Compatibility Notes 23
Kernel compatibility 23

Executable formats 23
Error numbers 23

Errors with different values 24
System calls with different error returns 26

Signals 28
Core file generation 28
CPU status information 28
C2 Security (libprot) library 29

OSR5 ABI Applications 29
SVR5 ABI Applications 29

System calls 29
SUDS extension 29
access(2) 30
adjtime(2) 30
execlp(2) / execvp(2) 30

2 OpenServer 6 Porting Guide

fcntl(2) 30
getrlimit/setrlimit(2) 30
libattach/libdetach(S) 30
memcntl(2) 30
mmap(2) 31
mount(2) 31
nice(2) 31
paccess(S) 31
pipe(2) 31
poll(2) 32
priocntl(2) 32
probe(S) 32
ptrace(2) 32
setcontext(2) 32
sysi86(2) 33
sysinfo 33
syssetconf 34
uadmin(2) 34
ulimit(2) 34
waitid(2) 34
xsetre[gu]id(S) 34

API Compatibility 35
Manual Pages 35
C library (libc) interfaces 36

tm structure 36
confstr 36
dlsym 37
fnmatch 37
ftw/nftw 37
glob/globfree 38
iconv 39
isnan/isnand/isnanf 39
jmp_buf 39
mallinfo 39
nl_langinfo 39
passwd structure 39
sigset_t 40
sysconf 40
ttyslot 41

BSD library (libucb) interface 41
Threads and asynchronous I/O (libthread) interfaces 41
Network support library (libnsl) interfaces 41

AUTH structure 41
CLIENT structure 41
Berkeley style client calls 41
Portmapper 41
Berkeley style service calls 42

 3

SVCXPRT structure 42
Transport interface (XTI and TLI) 42
Sockets interface 43

Socket addressing 43
accept 44
bind 44
connect 45
ether_aton 46
ether_hostton 46
ether_line 47
ether_ntoa 47
ether_ntohost 47
ftruncate/truncate 47
getpeername/setpeername 47
getsockname/setsockname 47
getsockopt/setsockopt 48
gettimeofday/settimeofday 48
listen 49
netgroup 49
recv/recvfrom/recvmsg 49
select 50
send/sendto 50
shutdown 51
socket 51
openlog 52

Name resolution (libresolv) library routines 52
File transfer protocol (ftp) interface 52
STREAMS interface 52

I_GETCLTIME 53
I_RECVFD 53
I_S_RECVFD 53
I_SETSIG 53

Event queue (libevent) interface 53
SNMP (libsnmp) interface 53

make_varbind 54
parse_pdu 56

SNMP I/O (libsnmpio) interface 57
get_response 57
send_request 58

SMUX (libsmux) interface 58
Object identifier (OID) structure 58
Object type (OT) structure 58
SCO OpenServer 64 bit counters 60
Aggregate structure notes 60

Termios and termio interfaces 61

4 OpenServer 6 Porting Guide

curses (libocurses) interface 61
curses header files 61
terminfo and termcap databases 62
X/Open curses (formerly libstdcurses) library 62

BSD database management (libdbm and libndbm) interface 62
Encryption (libcrypt) interface 62
Executable and Linking Format (libelf) interface 62
Graphic interfaces 62

A Guide to debug for dbx Users 63
Starting debug 63
Command Line Options 63
Setup 64
Configuration example 64
General Tips 65
Debugger Variables 67
Execution and Tracing Commands 68
Printing Variables and Expressions 71
Accessing source files 74
Command Aliases 74
Machine Level Commands 76
Miscellaneous Commands 76
Common tasks 78

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 5

1 Porting SCO OpenServer 5
Applications to SCO OpenServer 6

This document describes porting SCO OpenServer Release 5 applications to Release 6, and
techniques that can be used to make such a port successful.

1.1 About porting SCO OpenServer 5 applications

Porting applications to SCO OpenServer 6 is not difficult. Many ports will involve no more than
making a few changes to a makefile, then recompiling using the SCO OpenServer 6 Development
System (Dev Sys).

Porting may not even be necessary:

• An application that uses only SCO-supported Release 5 interfaces should run unmodified on
Release 6.

• An application that uses third-party interfaces not supported by SCO may still run unmodified on
Release 6 if all required libraries are installed on the Release 6 system along with the application.

But you may want to recompile your application on SCO OpenServer 6 to take advantage of new fea-
tures such as multithreading or large files, to gain better runtime performance, to access new
resources on Release 6, or for other reasons.

The SCO OpenServer 6 Development System allows you to compile programs using either the
Release 5 ABI or the Release 6 ABI, as described in the following section.

1.1.1 Compiler ABI modes: UDK and OSR5

SCO OpenServer 6 is designed to run both SCO OpenServer Release 5 (OSR5) ABI applications as
well as System V Release 5 (SVR5) applications. These two kinds of applications are distinct
because they:

• make different kinds of system calls to the operating system

• make use of different application programming interfaces (APIs)

• embody different application binary interfaces (ABIs).

The OSR5 ABI is the interface supported by SCO OpenServer Release 5 systems, while the SVR5
ABI is the default ABI for Release 6 (and for future OpenServer development). It is also the ABI sup-
ported by the UnixWare/OpenServer Development Kit (UDK) and so is sometimes called the UDK
ABI.

Within any one operating system process, every object file must have been compiled using either the
OSR5 ABI or the SVR5 ABI; this applies to the application and all the libraries it uses. These ABIs
cannot be mixed within a single process.

6 OpenServer 6 Porting Guide

The C compiler (cc command), the C++ compiler (CC command), and a few other development tools
include a -K option to select the ABI (or mode), with udk representing the SVR5 ABI and osr speci-
fying the OSR5 ABI.

The default ABI used (i.e., when no -K option is specified) depends upon how the compilers and
related tools are invoked. For example:

In general, which ABI you use when you port your application to Release 6, depend on the consider-
ations listed in the following table:

For more information about using these compiler modes, see the Dev Sys overview at: http://
osr600doc.sco.com/en/SDK_oview/DEVSYS.oview.html.

1.1.2 Mixed mode issues

If you have an existing SCO OpenServer 5 application that you want to modernize with threads or
large files or some other SVR5-dependent feature, you must compile it in UDK mode. Because UDK
mode features some different APIs from SCO OpenServer 5, it is possible that you will have some
porting work and source code modifications to do. Occasionally the mode requirements may present
a contradiction: for instance, you have an existing SCO OpenServer 5 application program that
depends upon and is linked against a third-party library archive. Now you want to modify another
part of this program to handle large files. That means you need to use UDK mode, but the presence of
the third-party library means you need to use OSR mode. Assuming you cannot get the library vendor
to re-build it in UDK mode, what do you do?

/usr/ccs/bin/cc default is UDK mode; use -K osr for OSR5 mode (OSR5 ABI)

/osr5/usr/ccs/bin/cc default is OSR mode; use -K udk for UDK mode (SVR5 ABI)

Use UDK mode if: Use OSR5 mode if:

• You are writing a new application, or porting
an application that has never been run on an
SCO platform.

• Your application needs to use threads (e.g.
makes calls to pthread_create()) or large files
(e.g. makes calls to fopen64()) or other
advanced features of the Release 6 kernel.

• You would like your application binary to run
on UnixWare as well as SCO OpenServer
Release 6.

• You are writing Java native code (JNI)

• You are writing a device driver for SCO
OpenServer Release 6.

• You want to minimize code changes to
your application and pick up improve-
ments made to the OSR5 APIs, or to gen-
erate better-performing code.

• You are developing an application that will
also run on Release 5.

• Your application needs to link with
Release 5 objects or libraries (.o, .a, .so
files) that you or others created, that you
do not want to (or cannot) recompile.

http://osr600doc.sco.com/en/SDK_oview/DEVSYS.oview.html
http://osr600doc.sco.com/en/SDK_oview/DEVSYS.oview.html

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 7

In this situation you must split your application program into two processes. One process makes the
calls to the third-party library and is compiled in OSR5 mode. The other process makes the calls to do
the large file I/O and is compiled in UDK mode. Then you must use some sort of inter-process mech-
anism (such as sockets, pipes, or IPC) to communicate between the two processes.

1.2 Tool sets supported

The SCO OpenServer 6 Development System (Dev Sys) is found on SCO OpenServer 6 Installation
CD-ROM in the media kit. The Dev Sys offers:

• the best integration with SCO OpenServer 6

• generally the best performing generated code (in terms of size and speed)

• a stronger debugger

• the best ability to have the resulting binaries run not just on SCO OpenServer 6, but SCO OpenS-
erver 5 and UnixWare 7 as well.

This document assumes that the SCO OpenServer 6 Dev Sys is being used.

If your application is in Java, then the Java 2 Standard Edition for SCO UNIX Operating Systems is
the vehicle to use to build (if necessary) and run the application. This is installed by default on every
SCO OpenServer 6 system.

1.3 Compiler option guidelines

Basic compiler options are defined by POSIX and tend to be the same across platforms (such as -c
and –P). Others are trickier and can lead to porting problems. Here are some of the more common
problems:

• Link with the right command. Some existing makefiles from SCO OpenServer 5 will link C or
C++ programs with ld or link C++ programs with cc, neither of which work with SCO OpenS-
erver 6. Always use cc to link C programs and CC to link C++ programs (if the program is a mix-
ture, use CC). The same is true if you are linking dynamic libraries (.so files). In this case, also
use the -G -KPIC options to indicate you want a dynamic library with relocatable code. (Using
the -s option that some systems use for this will generate a stripped library that has no debug
information.) For both C and C++, much more is done during the link step than simple linking.
For C, which now uses DWARF II for debug information, debug abbreviation tables are brought
in. For C++, template instantiation prelinking is performed, static constructor and destructor
sequences are anchored, and so on. As a rule, using ld directly is inappropriate except when using
ld -r to create a conglomeration of object files.

• Do not add -lc or -lC to the link command line. This is sometimes present in makefiles, but the
order in which system libraries are linked is critical. The cc and CC commands do this automati-
cally – do not call these libraries explicitly (the compiler will generate a warning).

8 OpenServer 6 Porting Guide

• Use -Kthread or -Kpthread instead of -lthread. Multithreaded applications frequently use
makefiles that pass -D_REENTRANT, -D__THREADSAFE, or some other such symbol to
compilers, and then link with -lthread. On SCO OpenServer 6, both C and C++ use a -Kthread
(for SVR4 threads) or -Kpthread (for POSIX threads) option at preprocessing, compile, and link
time to indicate that multithreading is active.

Using –lthread will cause problems (and the compiler will generate a warning), because of
the system library ordering problem discussed previously.

• Use dynamic links, not static. Applications work best on SCO OpenServer 6 when they are
dynamically linked against system libraries instead of linked statically. This ensures the appropri-
ate version of a library is used. (This is why there are no static versions of system libraries like
libsocket and libnsl.) If you must link statically, use -dn and not -Bstatic. The latter might have
the desired effect with some other compilers, but its meaning in SCO OpenServer 6 is different (it
toggles the way the linker looks for libraries) and using it improperly usually causes a runtime
failure.

• Be aware of assumptions about symbol exporting. On some UNIX platforms (notably Solaris)
the linker exports all global symbols defined in an executable. This means that shared libraries
will see those symbols, even if the libraries are dlopen’d during runtime. In SCO OpenServer 6,
the linker only exports those symbols defined in an executable that are referenced in the shared
libraries seen during the link. That means that if a library is dlopen’d during runtime, it will not
see any other symbols that may have been defined in the executable. If these symbols are needed,
they should be explicitly exported by passing in the -Wl,-Bexport=name option to the linker.
Simply passing -Wl,-Bexport will cause the linker to match the Solaris default behavior.

• Libraries for graphical apps. For SCO OpenServer 6, there is a list of libraries that must be
named to link a Motif application:

-lXm -lXt -lXext -lX11 -lSM -lICE -lsocket -lnsl

Most makefiles from other compilers do not have all these libraries named. If they are not
specified, unresolved symbols will result.

• Libraries for networking apps. For SCO OpenServer 6, the order of networking libraries is sig-
nificant. It should be done like this:

[-lresolv] -lsocket -lnsl

This means libresolv need not be present, but should go first if it is used. The other two are
mandatory and should be used in the order shown.

1.4 API issues

In general, SCO OpenServer 6 is compliant with POSIX, XPG4, UNIX 95, and UNIX 98. If the
application being ported is also compliant to these standards, a simple recompile and relink should be
all that is necessary. In reality, things are rarely that easy. Kernel and API compatibility issues may
affect the ability of your application to run as expected on Release 6. These issues are described in the
section “Kernel and API Compatibility Notes” on page 23.

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 9

1.5 C language dialect issues

• Generally, the Dev Sys C compiler accepts any ISO-standard C code. In default mode, this also
includes accepting K&R C dialect (but using ISO semantics where there is a difference). You can
give those cases K&R semantics using the cc -Xt transition compilation option. This is usually
done to preserve “unsigned-preserving” integral promotion rules (versus the standard “value-pre-
serving” integral promotion rules). Do not use cc -Xt unless you must. It is better to bring code up
to date since using cc -Xt can result in a significant performance loss (due to the lack of the vola-
tile attribute).

• Another porting problem occurs for code that assumes a particular signedness of “plain” char. By
default, the Dev Sys compiler takes them as signed; the default can be changed to unsigned
using the -Kuchar option.

• The Release 5 Dev Sys C compiler's -Xk option for K&R mode is not supported by the Release 6
Dev Sys C compiler; use -Xt instead. In addition, the OSR5 C compiler's -Xm option for
‘Microsoft mode’ is obsolete and no longer supported.

• Note that the Dev Sys C compiler fully supports 64-bit integers via the long long type.

• The most frequent source of C dialect problems comes from gcc-built applications. The GNU C
compiler has a number of extensions in it that are not supported on other platforms. The most
well-known of these is support for variable-sized arrays:

int length(void);
int foo(void)
{

int x=length();
char f[x];
...

}

This feature is present in a somewhat different form in the ANSI/ISO 1999 C standard, but is
not supported in the Dev Sys C compiler. This means the code must be rewritten using heap
allocation.

• Another change brought about by the C 99 standard is that inline and restrict are now C key-
words. If this conflicts with existing code and it is not practical to modify the code, the Dev Sys
cc -Xb option can be used to suppress the recognition of these two new keywords.

1.6 C++ language dialect issues

The ANSI/ISO 1998 C++ standard invalidated a lot of old, existing C++ code. The following are a
few of the better-known examples:

• new keywords

• for loop variable scope change

10 OpenServer 6 Porting Guide

• template specialization syntax, guiding declarations

• template friends syntax change

• new failure throws exception

• implicit int gone

A more detailed discussion of some of these incompatibilities can be found in newer C++ textbooks,
such as Bjarne Stroustrup’s The C++ Programming Language (Third Edition), or in the Internet
McCluskey C++ Newsletter.

So how do you get existing C++ code bases to compile using the Dev Sys compiler? For many years
the original AT&T cfront was the most heavily used C++ compiler. For existing cfront-built code,
there is a Dev Sys CC -Xo compatibility option that provides cfront source compatibility. But this
also enables cfront bug tolerance and many anachronisms. There are some instances of cfront that
CC -Xo will not detect or accept. It is intended as a transitional tool for converting code to the mod-
ern dialect of C++ acceptable by the Dev Sys C++ compiler. It should not be used on a permanent
basis.

For example, consider this code:

template <class T>
class A {

int m, n;
int explicit;

public:
void f();
T g();

};
template <class T>
void A<T>::f() {

for (int i = 0; i < 10; i++)
n += i;

for (i = 0; i < 10; i++)
m += i;

}
char A<char>::g() { return ‘a’; }
int main() {

A<int> a;
a.f();

}

This compiles under a cfront-era C++ compiler without problems, but generates many errors with the
Dev Sys C++ compiler. The same code source compiles without error under the Dev Sys C++ com-
piler using the -Xo option.

Most ANSI/ISO source language incompatibilities are not complicated and can be straightforwardly
resolved, so in most cases it is best to bring the code up to date. In this case, it’s simply a matter of
avoiding the new keyword, using the new template specialization syntax, and adjusting to the new for
loop variable scope rule.

Here is the new version with three simple edits that compiles properly on the OSR6 Dev Sys C++

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 11

compiler without using any compatibility option:

template <class T>
class A {

int m, n;
int is_explicit; // changed

public:
void f();
T g();

};
template <class T>
void A<T>::f() {

for (int i = 0; i < 10; i++)
n += i;

for (int i = 0; i < 10; i++) // changed
m += i;

}
template<> char A<char>::g() { return ‘a’; } // changed
int main() {

A<int> a;
a.f();

}

1.7 Changes to the runtime environment

The subsections that follow discuss changes to the runtime environment in SCO OpenServer 6 that
must be taken into account when porting any Release 5 application. Your application may also
encounter runtime issues related to other changes in the runtime environment between Release 5 and
Release 6. See the Upgrade Guide at http://www.sco.com/support/docs/openserver/600/migration
for more information on changes to the runtime environment in Release 6.

Note: While the SVR5 ABI is the default runtime binary interface, the SVR5 kernel recog-
nizes OSR5 ABI applications and runs them in the environment that OSR5 ABI applications
expect. There are no special steps or commands needed to run an application on Release 6
that was compiled in OSR5 mode (or compiled using the Release 5 Development System).

1.7.1 Console Display Problems

Some SCO OpenServer 5, SCO Unix, and SCO Xenix applications may not display correctly on the
OpenServer 6 console, even though they ran without problems on the SCO OpenServer 5 scoansi
console. These problems include:

• Line drawing characters are replaced by accented characters.

• Function keys do not return the expected values.

The most likely cause of these problems are poorly written applications that are using hardwired
escape sequences. There also may be problems caused by a clash between the codeset that the appli-
cation is using and that used by the OpenServer 6.0.0 console.

There are a number of possible solutions to these problems. For more information, please go to the

http://www.sco.com/support/docs/openserver/600/migration
http://wdb1.sco.com/kb/search/

12 OpenServer 6 Porting Guide

SCO Support Knowledge Center (http://wdb1.sco.com/kb/search/) and search for TA# 126154.

1.7.2 Device information

Some OSR5 ABI applications parse various system data files on Release 5 (such as /dev/string/cfg) to
obtain device information, such as SCSI addresses. These methods in general should not be used on
OpenServer 6, since many (such as /dev/string/cfg) no longer exist, and the format of these files
changes as new technologies are introduced. Similarly, output formats for some device-related com-
mands have and will continue to change (such as sdiconfig -l).

The devattr command is the reliable way to obtain device information on Release 6 and future
releases:

devattr -v cdrom1
alias='cdrom1'
bdevice='/dev/cdrom/c1b0t0l0'
bdevlist='/dev/cd0,/dev/cdrom/cdrom0'
bklib='SCSI'
bufsize='2048'
cdevice='/dev/rcdrom/c1b0t0l0'
cdevlist='/dev/rcd0,/dev/rcdrom/cdrom0'
desc='SCSI CD-Rom Drive 1'
display='true'
inquiry='TOSHIBA DVD-ROM SD-M17121004'
mountpt='/installr'
pdimkdtab='true'
removable='true'
scsi='true'
type='cdrom'
volume='CD'

Use the getdev command to list the device aliases to use with devattr:

getdev | pg
cdrom1
disk1
diskette1
hba1
hba2
...

If the cdrtools package is installed, you can also use the cdrecord -scanbus command to scan the
SCSI bus:

cdrecord -scanbus
Cdrecord-ProDVD-Clone 2.01 (i586-sco-sysv5uw7.1.4) Copyright (C) 1995-2004 Jörg
Schilling
Using libscg version 'schily-0.8'.
scsibus1:
 1,0,0 100) 'TOSHIBA ' 'DVD-ROM SD-M1712' '1004' Removable CD-ROM
 1,1,0 101) *
 1,2,0 102) HOST ADAPTOR
 1,3,0 103) *
 1,4,0 104) *
 1,5,0 105) *
 1,6,0 106) *

http://wdb1.sco.com/kb/search/

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 13

 1,7,0 107) *

1.7.3 Runtime commands

If a Release 5 application requires Release 5 runtime commands (that is, it fails using the default
command reached by the default PATH variable on OpenServer 6), Release 5 commands are supplied
in the directory /osr5/bin. Change the PATH variable for the application so that it accesses binaries
under /osr5/bin before other command directories. Manual pages for these commands can be found
on the OpenServer 507 doc web site: http://osr507doc.sco.com.

1.7.4 Runtime access of system/data files

Although links have been used to minimize problems associated with changes of location of system
files accessed by applications at runtime, some applications that depend on the internal format of files
may experience problems interpreting file contents. One example is the default /bin/cpio command,
which uses an “Extended cpio File Format”, instead of the “ASCII cpio format” used by the cpio
command on OpenServer 5. If your application requires the OpenServer 5 cpio file format, then
you’ll need to change your application to access the /osr5/bin/cpio version of cpio as described in the
last section.

1.7.5 NETbios/NETbeui

NETbios/NETbeui are no longer supported; runtime calls to NETbios commands and references to
NETbios resources will fail on SCO OpenServer Release 6.

1.7.6 XENIX 286 emulators

Calls to the legacy i286emul/x286emul runtime emulators and references to associated resources
will fail on OpenServer 6.

1.8 Binary debugging

SCO OpenServer Release 6 includes a number of tools for debugging. The sections that follow dis-
cuss some of these features in more detail.

debug Powerful and effective tool for source- and assembly-language debugging.
Replaces dbx, dbXtra, and other OpenServer 5 debuggers. Offers both graphical
and command-line user interfaces. Full support for both C and C++. Full support for
multi-process and multi-thread debugging. Available in both UDK and OSR5
modes (multi-thread does not apply to OSR mode).

fprof Flow profiling to analyze performance and locality of reference of text. Only avail-
able in UDK mode, but similar functions are available with fur.

http://osr507doc.sco.com

14 OpenServer 6 Porting Guide

1.8.1 Tracing system calls with truss

SCO OpenServer 6 includes a useful command named truss that can trace the system calls made by
an application. Using truss does not require recompilation, relinking, access to the source code, or
even a symbol table. The truss command replaces the Release 5 trace and scotruss commands.

Consider this code:

$ cat fstab.c
#include <stdio.h>
int main() {

FILE* fp = fopen(“/etc/fstab”, “r”);
if (!fp)

fprintf(stderr, “*** cannot open file\n”);
fclose(fp);

}
$ cc fstab.c
$./a.out
*** cannot open file

SCO OpenServer 6

The program fails because SCO OpenServer 6 uses /etc/vfstab not /etc/fstab, but the error message
does not indicate the file it failed to open. Running the program through truss displays each system
call, along with its arguments and the return code:

$ truss ./a.out
execve(“./a.out”, 0x08047570, 0x08047578) argc = 1
open(“/etc/fstab”, O_RDONLY, 0666) Err#2
ENOENT
*** cannot open file
write(2, “ * * * c a n n o t o”.., 21) = 21

fur Object-level optimizer that uses dynamic feedback from flow profiling to transpar-
ently rearrange application object code for better performance. Available in both
UDK and OSR5 modes.

While fprof is not available in OSR5 mode, fur can perform instrumentation and
flow analysis at the code block level. Based on the flow through each function, fur
can reorder the object code in a function to:

• improve reference locality

• reduce instruction execution stalls

• reduce branching

• improve cache hits

as well as reorder functions within an object.

memtool Memory error detection tool that finds common C or C++ memory errors and leaks
and gives source-level information about them. Only available in UDK mode.

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 15

_exit(-1)

In a large program (especially one you are not that familiar with), truss can help you determine the
point of failure. Using the –f option, truss can follow child processes as well as the parent process.
You can also use truss to grab and release existing processes on the system.

Along with knowing symbolic names for many manifest constants (the O_RDONLY above, for
example), truss can display additional information to further focus the trace. An explicit list of system
calls to trace (or not to trace) can be given to truss with the -t option.

The -a and -e options respectively cause truss to display all the passed arguments and the entire envi-
ronment at an exec.

Another advantage is that truss knows structures that cross the system call boundary. Using the -v
option, you can specify system calls for which you want to see complete structures displayed.

Finally, all of the data read and/or written on a file descriptor (instead of the default first few bytes)
can be displayed using the -r and/or -w options.

$ truss -w2 ./a.out
execve(“./a.out”, 0x08047570, 0x08047578) argc = 1
open(“/etc/fstab”, O_RDONLY, 0666) Err#2
ENOENT
*** cannot open file
write(2, 0x08047C14, 21) = 21

* * * c a n n o t o p e n f i l e\n
_exit(-1)

Note that you must be root to run truss on privileged programs.

1.8.2 Using the dynamic library tracing feature of the runtime linker

A feature similar to truss is provided for dynamic executables by the runtime linker in SCO OpenS-
erver 6.

When a dynamic executable calls a function that (potentially) is defined elsewhere -- outside of the
calling shared library or executable -- a call is actually made to a bit of code in the “procedure linkage
table” (PLT). This code then does an indirect branch to the target function. But, at process startup (by
default), all the PLT entries end up branching to the runtime linker, which searches the executable and
the current set of shared libraries for the actual definition of the target function. Once found, the runt-
ime linker modifies the destination of the indirect branch for that PLT entry so that it jumps to the
actual function.

Dynamic library tracing takes advantage of this lookup process and interposes a reporting function
between the caller and the callee. It can also insert a bit of code to return to that comes between the
callee and the caller that similarly reports the return value of the function.

As with truss, dynamic library tracing is disabled for processes that gain privilege for obvious secu-

16 OpenServer 6 Porting Guide

rity reasons.

This tracing differs from truss in a number of ways:

• Because each function can call further functions, the call and return are displayed separately.

• The runtime linker only knows a name to search for and (when found) the address. It does not
inherently understand anything else about a function, while truss has knowledge of each system
call. However, if the defining library provides a special table of encoded bits with an entry for this
function, the reporting code will be able to do something other than just print a few hexadecimal
words that might be actual arguments. Only the C and threads libraries provide this table. (Note
that if an entry is found, the reporting code can cause the process to die if it attempts to derefer-
ence a bad string pointer.)

• The runtime linker can only report functions that go through its lookup processing (internal func-
tion calls are not reported).

• The reporting code also displays the caller of each function.

Dynamic library tracing is enabled by running a process with certain environment variables set:

LD_TRACE Without LD_TRACE in the environment, no reporting will occur. If it
exists but has an empty string value, lines of this form are displayed:

sym(arg1,arg2,arg3) from hex_addr

For unknown functions, three hexadecimal words are printed as argu-
ments. Otherwise, the value of LD_TRACE is expected to be one or more
comma-separated keywords from the following list:

• sym -- display name+offset instead of hex_addr. The +offset part is
only shown when nonzero.

• lib -- add @lib after a hex_addr or name+offset to give the containing
library (or executable).

• ret -- also include tracing function returns.

• tim -- add a at sec.usec.

• hitim -- add either a at ticks or, when LD_TRACE_SCALE is set, at
sec.ticks. Note that the high-resolution timer requires the Pentium
rdtsc instruction. Moreover, using this instruction is a privileged
operation by default.

To enable this feature in SCO OpenServer 6, you must set USER_RDTSC
to nonzero using idtune and rebuild and reboot. Finally, because we do
not synchronize the processor timers on multiple CPU boxes, the timings
are likely to be inaccurate for such systems.

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 17

Tracing the same fstab.c example from above:

$ LD_TRACE=sym
./a.out
atexit(0x80483b4) from 0x8048459
atexit(0xbff9b09c) from 0x8048465
atexit(0x8048514) from 0x804846f
__fpstart() from 0x804847b
fopen(“/etc/fstab”,”r”) from 0x80484b1
_findiop() from _realfopen+7
_open(“/etc/fstab”,0x0,0x1b6) from endopen+141
__thr_errno() from _cerror+29
fprintf(0x80495ec,”*** cannot open
file”...,0x0,0x8047cb8,0x8048485) from 0x80484cc
_findbuf(0x80495ec) from fprintf+116
_xflsbuf(0x8047c44) from _idoprnt+358
_write(2,0x8047c04,21) from _xflsbuf+89
*** cannot open file
fclose(0x0) from 0x80484d7
exit(-1) from 0x804848e
_exithandle() from exit+18
_setjmp(0xbfffe628) from _exithandle+100
_cleanup() from _exithandle+151
fflush(0x0) from _cleanup+9

LD_TRACE_FILENO Provides the file descriptor to which to write the reports. By default, it is
2 (standard error).

LD_TRACE_ARGNO Provides the number of hexadecimal words to display for unknown func-
tions. It is 3 by default.

LD_TRACE_SCALE Provides the clock speed in MHZ to be used with hitim.

LD_TRACE_STACK Provides a simple stack trace feature. Its value is expected to be a
comma-separated list of function names for which to display a stack trace
at each call. All other reporting is disabled when LD_TRACE_STACK is
set. The stack trace algorithm uses a fairly straightforward scheme which,
unfortunately, fails for functions that return structures.

LD_TRACE_FRAMES Provides a maximum stack depth to trace when LD_TRACE_STACK is
set. The default value is zero which is taken to mean the entire stack.

LD_TRACE_ROUTINE
LD_TRACE_LIBRARY

Provide comma-separated lists of specific routine names and library
names, respectively, to report. Both of these interpret a leading “!” as
inverting the list (all but ...). Note that LD_TRACE_STACK wins over
LD_TRACE_ROUTINE. These two variables can be used to greatly trim
down the large amount of noise generated by default with LD_TRACE.

LD_TRACE_MAXSTR Sets the limit on string printing to a value in the range [0,120], with the
default being 20. (A value of 0 disables the dereferencing, which may be
necessary when a bad pointer has been passed to a routine that RTLD
expects to display as a string.)

18 OpenServer 6 Porting Guide

Note that even with symbols enabled, the reporting of some addresses (like the caller of fopen) is still
just a hexadecimal value. This is because the only names available to the reporting code are those
exported from the executable and shared libraries and by default only the necessary few global names
are exported by the linker in the executable. If you use pass the -Wl,-Bexport option to the linker
(see above regarding exported names) all global functions are exported.

Adding return value tracing:

$ LD_TRACE=sym,ret ./a.out
atexit(0x80483b4) from 0x8048459

=> atexit returned 0
atexit(0xbff9b09c) from 0x8048465

=> atexit returned 0
atexit(0x8048514) from 0x804846f

=> atexit returned 0
__fpstart() from 0x804847b

=> __fpstart returned
fopen(“/etc/fstab”,”r”) from 0x80484b1
_findiop() from _realfopen+7

=> _findiop returned 0x80496d0
_open(“/etc/fstab”,0x0,0x1b6) from endopen+141
__thr_errno() from _cerror+29

=> __thr_errno returned 0xbfffedd0
=> _open returned -1
=> fopen returned 0x0

fprintf(0x80495ec,”*** cannot open
file”...,0x0,0x8047cb8,0x8048485) from 0x80484cc
_findbuf(0x80495ec) from fprintf+116

=> _findbuf returned 0x80495ec
_xflsbuf(0x8047c44) from _idoprnt+358
_write(2,0x8047c04,21) from _xflsbuf+89
*** cannot open file

=> _write returned 21
=> _xflsbuf returned 0
=> fprintf returned 21

fclose(0x0) from 0x80484d7
=> fclose returned -1

exit(-1) from 0x804848e
_exithandle() from exit+18
_setjmp(0xbfffe628) from _exithandle+100
_cleanup() from _exithandle+151
fflush(0x0) from _cleanup+9

=> fflush returned 0
=> _cleanup returned
=> _exithandle returned

Note in this example that the return from setjmp is not displayed. Certain special functions like set-
jmp are sensitive to their return address. Finally, a stack trace for write results in the following:

$ LD_TRACE=sym LD_TRACE_STACK=_write
./a.out
[0] _write(2,0x8047bec,21)
[1] _xflsbuf+89(0x8047c2c) [0xbffa7b05]
[2] _idoprnt+358(0x8047c2c,0x80484f8,0x8047c88) [0xbffa1eb6]
[3] fprintf+201(0x80495ec,”*** cannot open
file”...,0x0,0x8047ca0,0x8048485) [0xbffa8195]
[4] 0x80484cc(0x1,0x8047cac,0x8047cb4)
Page 41 SCO OpenServer 6

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 19

[5] 0x80484cc(0x8047cac,0x8047cb4,0x0)
*** cannot open file

1.8.3 Memory debugging with memtool

C (and to some degree C++) programs are infamous for memory allocation/corruption problems that
are difficult to debug. These can sometimes show up during ports of “working” code because a mal-
loc/free mistake might be missed on one platform but not on another. Such problems can go undetec-
ted for some time. Commercial tools such as Purify can help track down such problems.

The Dev Sys has a similar tool created by SCO, called memtool. Consider this simple error-ridden
program:

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <string.h>
4
5 int main() {
6 char *p = malloc(7), *q = “yes, too long\n”;
7 strcpy(p, q);
8 free(p);
9 q = 0;
10 *p = ‘Y’;
11 realloc(p, 3);
12 fputs(p, stderr);
13 return *q;
14 }

Most of the time, this program will run without problems, but will occassionally fail with memory
allocation errors. memtool can be used to pinpoint the code in your application that may cause mem-
ory-allocation-related problems. If you take the same program as above and recompile it with -g for
maximum symbolic information, you can then run the executable using memtool. This produces the
following diagnostic output:

$ cc -g error.c

$ /usr/ccs/bin/memtool ./a.out
==
Some abuses or potential misuses of the dynamic memory allocation subsystem
have been detected. The following multiline diagnostics are descriptions
of what exactly has been seen. They may include use of terms and concepts
with which you may be unfamiliar. Use the "-v" option to get the complete
version of this introduction.
==
A block's spare bytes have been modified. This usually occurs due to
writing beyond the block's regular bytes, either because an insufficient
number of bytes were requested when the block was allocated or simply
due to a programming logic error.

History for block at address 0x8049b70:
*Stack trace when detected:
 [0] free(ptr=0x8049b70)
 [1] main(0x1,0x8047e24,0x8047e2c) [error.c@8] in ./a.out
 [2] _start() [0x80485f4] in ./a.out

20 OpenServer 6 Porting Guide

*Stack trace when block at 0x8049b70 was allocated:
 [0] malloc(sz=7)
 [1] main() [error.c@6] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

Annotated snapshot surrounding the live allocation at address 0x8049b70
when the 5 bytes [0x8049b77,0x8049b7b] were found to have been modified.
This allocation holds 7 byte(s) followed by 5 extra (or spare) byte(s),
and, in this case, spare bytes were found to have been modified.

0x8049b60: 0x00000000 0x00000000 0x00000000 0x00000011
 : ******** ****
0x8049b70: 0x2c736579 0x6f6f7420 0x6e6f6c20 0x00000a67 yes, too long...
 : -------- ^^------ ^^^^^^^^ -------^^^^^

==
A block's header has been modified. Often this occurs due to mistakenly
writing past the end of the preceding block. You might also try using the
"-x" option to add spare bytes to the end of each block, and see whether
your application behaves differently.

History for block at address 0x8049b80:
*Stack trace when detected:
 [0] free(ptr=0x8049b70)
 [1] main(0x1,0x8047e24,0x8047e2c) [error.c@8] in ./a.out
 [2] _start() [0x80485f4] in ./a.out

Annotated snapshot surrounding the live allocation at address 0x8049b80
when the 4 bytes [0x8049b7c,0x8049b7f] were found to have been modified.
This allocation holds 4 bytes, but, in this case, the allocation's
header was found to have been modified.

0x8049b70: 0x2c736579 0xca6f7420 0xcacacaca 0x00000a67 yes, to.....g...
 : ^^^^^^^^ ^^^^
0x8049b80: 0x00000000 0x00000015 0xcacacaca 0xcacacaca
 : -------- ----

==
A recently free()d block was passed as the first argument to realloc().
Only null pointers or live block addresses are permitted to be passed to
realloc(), although, in this implementation, were dynamic memory checking
not enabled, this block's contents would have been preserved between its
being freed and this call to realloc(), but this is a nonportable feature
of this implementation which should not be relied on.

History for block at address 0x8049b70:
*Stack trace when detected:
 [0] realloc(ptr=0x8049b70,sz=3)
 [1] main(0x1,0x8047e24,0x8047e2c) [error.c@11] in ./a.out
 [2] _start() [0x80485f4] in ./a.out

*Stack trace when block at 0x8049b70 was released:
 [0] free(ptr=0x8049b70)
 [1] main() [error.c@8] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

*Stack trace when block at 0x8049b70 was allocated:
 [0] malloc(sz=7)
 [1] main() [error.c@6] in ./a.out

Porting SCO OpenServer 5 Applications to SCO OpenServer 6 21

 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

==
A free()d block has been modified. This usually means that the block was
passed to free() or realloc(), but the block continued to be used by your
application, possibly far removed from the deallocating code.

History for block at address 0x8049b70:
*Stack trace when detected:
 [0] realloc(ptr=0x8049b70,sz=3)
 [1] main(0x1,0x8047e24,0x8047e2c) [error.c@11] in ./a.out
 [2] _start() [0x80485f4] in ./a.out

*Stack trace when block at 0x8049b70 was released:
 [0] free(ptr=0x8049b70)
 [1] main() [error.c@8] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

*Stack trace when block at 0x8049b70 was allocated:
 [0] malloc(sz=7)
 [1] main() [error.c@6] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

Annotated snapshot surrounding the free allocation at address 0x8049b70
when the byte at 0x8049b70 was found to have been modified. This
allocation holds 12 bytes, one of which was found to have been modified.

0x8049b60: 0x00000000 0x00000000 0x00000000 0x00000011
 : ******** ****
0x8049b70: 0xcacaca59 0xcacacaca 0xcacacaca 0x00000179 Y...........y...
 : ------^^ -------- -------- ^-----------

==
LIVE ALLOCATIONS AT PROCESS EXIT

==
Memory allocations that have not been released by the time your process is
finished are in no way an error, but they are potentially ``leaks'' --
allocations that inadvertently have not been released once they were no
longer needed or in use. If your application has more than a few live
allocations displayed below with the same size and/or were allocated at the
same location, you may well have a leak; or if your application, when run
with more data or for longer periods, displays more live allocations here,
you also may have a leak. A leak also need not be repaired: A short-lived
process can easily survive having many leaks, as long as they are not too
large and there are not so many that available memory resources could become
exhausted (or even strained). Moreover, it may well be that ``the leaks''
are allocations that were all in use up to just before the process exits,
and the effort and the expense to release them all is not warranted.

Stack trace for 4 byte block at 0x8049cf8:
 [0] realloc(ptr=0x8049b70,sz=3)
 [1] main() [error.c@11] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

*Stack trace for block previously at 0x8049b70 before realloc() to 0x8049cf8:
 [0] free(ptr=0x8049b70)

22 OpenServer 6 Porting Guide

 [1] main() [error.c@8] in ./a.out
 [2] _start(presumed:0x1,0x8047e24,0x8047e2c) [0x80485f9] in ./a.out

1.8.4 Source debugging with debug

The Dev Sys debugger, debug, is a powerful tool for source and assembly-level debugging. It sup-
ports both C and C++ language debugging. (For Java debugging, use the command-line jdb debug-
ger.) The debugger has two basic user interfaces: command line and graphical.

Debugging the port of an existing application can be different from program development. Some
debugger features that may be useful in this regard are:

• The map command is excellent at showing the layout of memory, and where any arbitrary
address might be.

• Multithreaded debugging and multiprocess debugging support is strong in the debugger. Many
commands take a -p process-nbr.thread-nbr argument indicating a specific process or thread,
with -p all applying to all processes or threads.

• You can follow program forks into both the parent and child processes; other debuggers only
allow one or the other.

• The debugger allows you to grab existing processes (for example, that are hung in loops) or
debug core dumps.

The debug tool is not related to the dbx and gdb debuggers many Release 5 users are familiar with,
and uses a different command syntax. However, there is “A Guide to debug for dbx Users” on page
63 that will help such users gain familiarity with debug.

For more information on the Dev Sys debugger, see the Dev Sys debug documentation, on the web at
http://osr600doc.sco.com/en/SDK_cdebug/CONTENTS.html.

1.9 Development System documentation

See the SCO OpenServer 6 Development System Documentation on the web at http://
osr600doc.sco.com/en/Navpages/SDKhome.html. If you installed the Development System on
your OpenServer 6 system, the documentation is also available locally at http://hostname:8457/en/
Navpages/SDKhome.html, where hostname is the name of your system or localhost.

http://osr600doc.sco.com/en/SDK_cdebug/CONTENTS.htmlURL
http://osr600doc.sco.com/en/Navpages/SDKhome.html

Kernel and API Compatibility Notes 23

2 Kernel and API Compatibility Notes
As discussed earlier in this guide, SCO OpenServer Release 6 supports two ABIs: OSR5 and SVR5.
In addition, the common execution environment provided by the SCO OpenServer Release 6 kernel
and runtime libraries permits you to run most existing SCO OpenServer and UnixWare 7 applications
without modification.

As an aid to porting applications, the differences between the two ABIs are discussed in detail in
“Kernel compatibility” on page 23 and “API Compatibility” on page 35.

The more general subject of using the SVR5 libraries, compilers, header files, and other tools on any
platform is documented in the Software development documentation at http://osr600doc.sco.com/
en/Navpages/SDKhome.html.

2.1 Kernel compatibility

This section details the differences between system calls, libraries, ioctls, system files, and com-
mands supported on SCO OpenServer Release 5 and Release 6.

2.1.1 Executable formats

This section deals with the kernel’s ability to recognize and start the load process for binaries of vari-
ous types. This includes setting compatibility switches so the kernel can make decisions based on that
knowledge when processing various system calls and libray routines.

The Release 5 Development System marks Executable and Linking Format (ELF) binaries in a dis-
tinctive way; the Release 6 cc command with the -K osr option marks binaries similarly. The Release
6 kernel uses this information to switch on Release 5 system call semantics for OSR5 ABI binaries.
(Note that COFF executables are also assumed to be OSR5 ABI binaries.)

When the Release 6 kernel loads an ELF executable, the ELF processing code looks at the ELF note
section of the executable and, if it is 28 bytes long, it assumes the executable is a Release 5 ELF exe-
cutable.

Release 6 also provides a command that specifically mark the ELF flags section with a special string;
the Release 6 kernel checks for this string in the flag section and, if present, assumes the executable is
a Release 5 ELF executable. Using elfmark(CP), any ELF binary can be marked as an OSR5 ABI
binary.

2.1.2 Error numbers

There are two incompatibilities in the error numbers returned by Release 5 and Release 6 in errno:

• Some errors have different error numbers on each system (see “Errors with different values” on
page 24)

• The same calls on each system can generate errors that are not generated on the other system (see
“System calls with different error returns” on page 26)

http://osr600doc.sco.com/en/Navpages/SDKhome.html
http://osr600doc.sco.com/en/Navpages/SDKhome.html

24 OpenServer 6 Porting Guide

2.1.2.1 Errors with different values

There are three classs of error numbers with different values on Release 6 and Release 5:

• Errors that are semantically the same on both systems but have different error numbers on each
system; these errors are directly translated on Release 6. See ‘‘Errors that have different errnos on
each system’’.

• Errors on Release 6 that are not on Release 5; these errors are translated by the code for each sys-
tem call on Release 6, so that an error appropriate for OSR5 ABI applications is returned. Appli-
cations running on Release 5 will not see these errors; the behavior of portable programs should
not be made to depend on the target system returning these errors. See ‘‘Errors on Release 6 but
not Release 5’’.

• Errors on Release 5 that are not on Release 6; the resolution of the incompatibilities varies
depending on the system call, and is presented in ‘‘Errors on Release 5 but not SCO OpenServer
6 Release 6’’.

Errors that have different error numbers on each system.

Error Release 6
errno

Release 5
errno

ELOOP 90 150

ERESTART 91 152

ESTRPIPE 92 153

ENOTEMPTY 93 145

ENOSTOCK 95 93

EDESTADDRREQ 96 94

EMSGSIZE 97 95

EPROTOTYPE 98 96

ENOPROTOOPT 99 118

EPROTONOSUPPORT 120 97

ESOCKTNOSUPPORT 121 98

EOPNOTSUPP 122 99

EPFNOSUPPORT 123 100

EAFNOSUPPORT 124 101

EADDRINUSE 125 102

EADDRNOTAVAIL 126 103

Kernel and API Compatibility Notes 25

ENETDOWN 127 104

ENETUNREACH 128 105

ENETRESET 129 106

ECONNABORTED 130 107

ECONNRESET 131 108

ENOBUFS 132 109

EISCONN 133 110

ENOTCONN 134 111

ESHUTDOWN 143 112

ETOOMANYREFS 144 113

ETIMEDOUT 145 114

ECONNREFUSED 146 115

EHOSTDOWN 147 116

EHOSTUNREACH 148 117

EWOULDBLOCK 11(EAGAIN) 90

EALREADY 149 92

EINPPROGRESS 150 91

Errors on Release 6 and not Release 5

Error Release 6
errno

ECLNRACE 59

ENOLOAD 152

ERELOC 153

ENOMATCH 154

Errors that have different error numbers on each system.

Error Release 6
errno

Release 5
errno

26 OpenServer 6 Porting Guide

2.1.2.2 System calls with different error returns

The table below shows the errors returned for various system calls that are different between the
SVR5 ABI and Release 5. See the for each system call listed for the detailed resolution of the error
incompatibility (if you are viewing this document online, click on the system call name in the left-
most column to go to the appropriate table).

EBADVER 156

ECONFIG 157

ECANCELED 158

EUSERS 94

ENOTAUTH 160

ELKBUSY 170

Olivetti 200-223

Errors on Release 5 and not on Release 6

Error Release 5
errno

ELBIN 75

EDOTDOT 76

System call Additional errors on
Release 6

Additional errors on
Release 5

access EFAULT, ELOOP ETXTBSY

chdir EIO

chroot EACCESS, ELOOP,
ENAMETOOLONG

creat ELOOP,
ENAMETOOLONG

exec ENOLOAD, ENOTDIR ETXTBSY

Errors on Release 6 and not Release 5

Error Release 6
errno

Kernel and API Compatibility Notes 27

fchdir EIO

fcntl EFAULT, EIO, EINVAL,
EOVERFLOW

fork EINTR

fsync ENOLINK

ftruncate EAGAIN

link ENAMETOOLONG

lseek ENOSYS

mkdir ENAMETOOLONG,
ENOSPC

mknod EINVAL, ELOOP,
ENAMETOOLONG

mount EACCESS, ENOLOAD,
ELOOP,
ENAMETOOLONG

msgctl(ipcmsg) EOVERFLOW

msgsnd/msgrcv(ipcmsg) EINTR,EIDRM

nice EINVAL

ptrace EINVAL, EPERM

readlink ENOSYS

rmdir ELOOP,
ENAMETOOLONG

EINVAL

semctl (semsys) EOVERFLOW, EFAULT

semop (semsys) EINTR

shmctl (shmsys) ENOSYS

shmget (shmsys) ENOSYS

symlink ENOSYS, EIO EINVAL

sysacct ELOOP,
ENAMETOOLONG

System call Additional errors on
Release 6

Additional errors on
Release 5

28 OpenServer 6 Porting Guide

2.1.3 Signals

The signal incompatibilities between the SVR5 ABI and OSR5 ABI are managed by the kernel.

When a sigaction type signal is sent to a process running an OSR5 ABI binary, the kernel puts the
signal data in the OSR5 ABI structure before sending it to the application.

The incompatibilities arise in the siginfo_t and ucontext_t structures, which are different. See the
following sections for more detail:

• “setcontext(2)” on page 32

• “waitid(2)” on page 34

2.1.4 Core file generation

Core files generated on Release 5 systems are given file names of the form core.pid, where pid is the
process ID of the process causing the core dump. On Release 6, core files are named simply core
(though this behavior can be changed via a tunable). In general, portable applications should not
make assumptions about core file naming on target systems.

2.1.5 CPU status information

On Release 5, CPU status information (active or inactive) could be obtained by opening the /dev/at1
device and making an ioctl() call. Release 6 has no such device, so ported applications must use the
p_online() interface instead. Note that p_online() numbers processors starting at 0; on Release 5, pro-
cessors are numbered starting at 1. Here is an example code fragment:

int state = p_online(processor_number, P_QUERY);
switch (state) {
case P_ONLINE:

printf(“active “);
break;

case P_OFFLINE:
printf(“inactive “);
break;

case P_DISABLE:
printf(“disabled “);
break;

default:
fprintf(stderr, “%s: cannot determine processor_data[]\n”, Pgm);
exit(1);

umount ELOOP,
ENAMETOOLONG

unlink EFAULT, ELOOP ETXTBSY

utime EFAULT, ELOOP

System call Additional errors on
Release 6

Additional errors on
Release 5

Kernel and API Compatibility Notes 29

}
printf(“\n”);

2.1.6 C2 Security (libprot) library

2.1.6.1 OSR5 ABI Applications

The /osr5/usr/lib/libprot.so library is provided for use by OSR5 ABI applications only.

OSR5 ABI applications executing on Release 6 can expect that all libprot calls will functions as in
previous releases, with the exceptions shown in the table below. These calls all return ENOSYS on
Release 6. Ported applications should be rewritten to use the Release 6 equivalents:

Note that getluid and setluid have no exact equivalent in the OSR6 kernel. The "login user ID" is a
UID assigned the user’s login process, is propagated to all child processes, and can never be reset
once assigned.

2.1.6.2 SVR5 ABI Applications

SVR5 ABI applications use the SVR5 ABI library /usr/lib/libiaf.so for Identification and Authentica-
tion, and these calls are not functional in the Release 6 kernel.

This will be resolved in a Release 6 Maintenance Pack when an SVR5 ABI version of libprot will be
provided, as well as an updated libiaf that's compatible with libprot and its Identification and Authen-
tication implementation.

2.1.7 System calls

The subsections that follow detail the differences between the system calls supported on Release 5
and the SVR5 ABI.

2.1.7.1 SUDS extension

These are a set of calls in a configurable module for Release 5 only. They are defined in a static
library, libsuds.a, and are accessed through their own call gate that does nothing until the system is
properly configured for these calls. The SUDS calls are unsupported on Release 6.

Release 5 libprot call Release 6 equivalent

stopio(S-osr5)

getluid(S-osr5) getuid(S)

setluid(S-osr5) setuid(S)

statpriv filepriv(S)

chpriv filepriv(S)

30 OpenServer 6 Porting Guide

2.1.7.2 access(2)

Two constants defined in unistd.h for deriving the amode argument are not normally used on Release
5 (EX_OK and EFF_ONLY_OK). OSR5 ABI binaries will not normally use these values since they
did not have kernel support, but since they are in unistd.h, it is possible for an OSR5 ABI application
to use them. If such a binary runs on the SVR5 ABI, the EX_OK and EFF_ONLY_OK constants will
be evaluated correctly as part of amode. This may cause the application to behave differently than it
did on Release 5.

2.1.7.3 adjtime(2)

The Release 5 version of this system call is affected by a number of system tunable parameters that
are not present in the SVR5 ABI: update_rtc (if set to 1, the real time clock is set to the new system
time after adjtime); clock_drift (the rate at which adjustment is made in nanoseconds/second);
and, track_rtc (keeps system clock accurate). OSR5 ABI applications that make assumptions based
on the behavior of adjtime when the above parameters are set (on Release 5) may exhibit unexpected
behavior with the SVR5 ABI.

2.1.7.4 execlp(2) / execvp(2)

The OS libc code retries up to 5 times on an ETXTBSY for the execlp and execvp system calls. The
SVR5 ABI libc does not return ETXTBSY, so an application expecting this behavior will not see it.

2.1.7.5 fcntl(2)

The SVR5 ABI fcntl system call has many more commands than the Release 5 system call:
F_DUP2, F_GETOWN, F_SETOWN, F_FREESP, F_RSETLK, F_RSETLKW, F_RGETLK. A por-
table application compiled using the SVR5 ABI should avoid using these commands, as they will fail
with ENOSYS (or SIGSYS) on Release 5.

2.1.7.6 getrlimit/setrlimit(2)

On Release 5, the mnemonic for resource number 6 is RLIMIT_AS. For the SVR5 ABI, the mne-
monic is RLIMIT_VMEM. However, the function of resource number 6 in both systems is exactly
the same, so this does not cause a problem for OSR5 ABI binaries.Any source code brought to
Release 6 from Release 5 would have to be changed (if it uses the Release 5 RLIMIT_AS mnemonic)
before compiling with the SVR5 ABI compilation.

2.1.7.7 libattach/libdetach(S)

These Release 5 calls support static shared libraries for user applications; the calls are in the Release
5 kernel, but are not documented. These calls are not supported by the SVR5 ABI. A Release 5 appli-
cation using this call on Release 6 will return ENOSYS for the call.

2.1.7.8 memcntl(2)

Although memcntl is not documented in Release 5, there is code in the kernel to support it. The call
is documented in the SVR5 ABI, and is the same except for two extra subcommands available on
Release 5: MC_MAPCPU and MC_MAPUBLK. Any Release 5 binary that uses these subcommands

Kernel and API Compatibility Notes 31

will fail with ENOSYS when run on Release 6.

2.1.7.9 mmap(2)

The Release 5 mmap.h contains 4 undocumented subcommands not supported by the SVR5 ABI:
MAP_PHMEM, MAP_KVMEM, MAP_ANCESTRAL, and MAP_NOEOF. An OSR5 ABI applica-
tion will get an ENOSYS error return when it attempts to use these subcommands on Release 6.

2.1.7.10 mount(2)

File-system specific options can be a problem if a given fstype name is the same on both systems (in
sysfs) but the options in data_ptr are not.

There is a difference in the mflags=0x8 defined in mount.h. On Release 5 it is ‘MS_CACHE’,
described in mount.h as “RFS client caching”. On Release 6 it is ‘MS_HADBAD’, described in
mount.h as “file system incurred a bad block so set sstate to FSBADBLK on mount”.

The MS_NOEXEC mflag is defined in mount.h on Release 5 as “return ENOEXEC on exec()”. Its
bit value is 0x8000. Release 6 does not have anything at that bit value or a function like this at
another value. Using this call on Release 6 results in EINVAL.

2.1.7.11 nice(2)

On Release 6, nice can only work on processes in the time sharing class, and returns EINVAL on
attempts to change the priority of a fixed priority class process. On Release 5, nice does not return
EINVAL. If a Release 5 application is run on Release 6 and does a nice on a fixed priority class pro-
cess, it would get an unexpected EINVAL error.

To fix, alter the Release 5 application source code to expect EINVAL as a possible error return on
using nice, and then recompile.

2.1.7.12 paccess(S)

This Release 5 system call is unsupported by the SVR5 ABI. The paccess(S) system call on Release
5 gets and sets parameters in the u area of the current process and is used by a parent process to trace
a child process.

An OSR5 ABI application using paccess must be recoded to use the /proc file system to access status
information about a process. See proc(F).

2.1.7.13 pipe(2)

With the SVR5 ABI, pipes are implemented as two bidirectional, STREAMs-based file descriptors.
For the OSR5 ABI, a pipe is implemented as two one-way file descriptors, with one fd being ‘send’
and the other ‘receive’. Release 5 applications run on Release 6 will behave properly despite the dif-
ference in implementation.

32 OpenServer 6 Porting Guide

On Release 6, an fstat (see stat(S)) of a pipe returns the sum total of bytes available to be read on
both pipes as the byte count of the pipe. On Release 5, it is just the data on the inward bound pipe.

The write side of a pipe on Release 5 blocks after 5120 bytes of data. On Release 6, the write side
could block considerably later (depending on water marks and system resources). If an OSR5 ABI
application depends on the write side blocking after 5120 bytes of data, it will probably not work cor-
rectly.

2.1.7.14 poll(2)

The OSR5 ABI poll code shows a system wide tunable poll_delay_compatibility that effects
whether a poll call with no file descriptors will honor the timeout; if the tunable is set, the timeout is
honored.

OSR5 ABI binaries executed on Release 6 will behave the same as on Release 5 (i.e., the
poll_delay_compatibility tunable is checked and the timeout is honored only if the tunable is
set).

2.1.7.15 priocntl(2)

The SVR5 ABI supports a few documented commands not supported by the OSR5 ABI:
PC_ADMIN, PC_SETAGEPARMS, and PC_GETAGEPARMS.

2.1.7.16 probe(S)

On Release 5, this undocumented system call executes all the configured probe routines and returns
the information they return to the calling user process. This system call is not supported on Release 6.
OSR5 ABI applications run on Release 6 will return ENOSYS if they make a call to probe.

2.1.7.17 ptrace(2)

An OSR5 ABI application using ptrace should be recoded to use the /proc file system, which is the
preferred interface for accessing status information about a process. See proc(F).

While ptrace(S) is supported on Release 6, only requests ‘0’ through ‘9’ are supported. The Release
5 kernel supports ‘0’ through ‘13’.

To run on Release 6, an OSR5 ABI application that needs to use ptrace would probably need to be
recompiled. It is highly recommended that such an application be rewritten to use /proc instead.

2.1.7.18 setcontext(2)

There are differences in the ucontext structure used by this system call on Release 6 and Release 5:

• On Release 6, sigset_t is 4 int fields; there is a uc_privatedatap long and 4 long fillers at
the end of ucontext_t.

• On Release 5 sigset_t is 1 int, but there are 3 int fillers. At the end of ucontext_t there are 5
long fields.

Kernel and API Compatibility Notes 33

This incompatibility is managed by the Release 6 kernel for OSR5 ABI applications provided these
applications always precede a call to setcontext with a call to getcontext. If an OSR5 ABI applica-
tion running on Release 6 makes a call to setcontext that is not preceded by a call to getcontext, the
application could pass bad data to setcontext, with unpredictable results.

2.1.7.19 sysi86(2)

On Release 5, the SI86GETFEATURES call is used extensively by libc and other libraries to deter-
mine if a feature is available in the kernel. This subcommand is supported on Release 6, but
FEATURE_TCGETS and FEATURE_SID will be turned off, as these services are not provided by
the Release 6 kernel.

There are a number of sysi86 subcommands that are on Release 5 but not on Release 6. If an OSR5
ABI executable invokes any of these subcommands, the Release 6 kernel returns EINVAL:

0x23 (there is no mnemonic for this command in the sysi86 OSR5 ABI)
SI86KSTR
SI86SWAP
SI86SWPI
RDUBLK
SI86VM86
SI86GETPIPE
SI86SETPIPE
SI86POPPIPE
SI86GETNPIPE
SI86SETPIPE_NM
SI86GETPIPE_ALL
SI86APM
SI86TIMECHG
SANUPD
SI86CAUNICENTER
SI86SETSYSLOG

2.1.7.20 sysinfo

The following commands are not supported by the OSR5 ABI:

SI_SET_HOSTNAME
SI_HW_PROVIDER
SI_HW_SERIAL
SI_ARCHITECTURE
SI_INITTAB_NAME
SI_BUSTYPES
SI_KERNEL_STAMP
SI_OS_BASE
SI_OS_PROVIDER
SI_USER_LIMIT

34 OpenServer 6 Porting Guide

2.1.7.21 syssetconf

This Release 5 system call and the kernel tunables it provides are unsupported on Release 6.

The Release 5 syssetconf system call is an extension to sysconf that provides a set of ‘kernel’ type
tunables, none of which are documented on the Release 5 sysconf(S) man page (syssetconf itself is
undocumented). These constants are visible to applications, however, in the Release 5 sys/unistd.h
header file, so an OSR5 ABI application can use them. None of these values are defined on Release
6. OSR5 ABI applications run on Release 6 that use syssetconf on Release 6 will return ENOSYS
(and/or a SIGSYS signal). Such applications need to be recoded to work properly on Release 6.

Note that on Release 6, sysconf(S) is implemented as a C library function, not a system call.

2.1.7.22 uadmin(2)

There are two commands for this system call on Release 5 that are unsupported on Release 6:
A_BDEVSYNC, A_GETDEV, and AD_PWRNAP. OSR5 ABI applications using these commands
on Release 6 will get an ENOSYS error return and a SIGSYS signal).

On Release 6, the AD_HALT subcommand (to A_SHUTDOWN) shuts the system down, but does
not support the “reboot on keystroke” functionality supported by Release 5.

2.1.7.23 ulimit(2)

The Release 6 system call supports two more commands than Release 5: UL_GMEMLIM and
UL_GDESLIM.

2.1.7.24 waitid(2)

The siginfo_t structure used by this call differs between Release 5 and Release 6. For OSR5 ABI
application binaries running on Release 6, these differences are managed by the kernel. An OSR5
ABI application being ported to the SVR5 ABI on Release 6 might need to be changed to conform to
the SVR5 version of siginfo_t. Both versions have the same overall size, but there are differences
in members and internal offsets, as follows:

• Although both structures use the pid_t data type, this type is a 32-bit value on Release 6 and a
16-bit value on Release 5.

• There are differences in _proc._pdata for the _kill and _cld structures within siginfo_t.

• The _fault structure in Release 6 has additional members not on Release 5.

See the header files /usr/include/sys/siginfo.h and /osr5/usr/include/sys/siginfo.h for details.

2.1.7.25 xsetre[gu]id(S)

The Release 5 xsetregid(S) and xsetreuid(S) functions allow setting the ‘real’ and ‘effective’ uids
and gids in one system call. There are versions supported on Release 5 in both libc.so.1 and lib-
socket.a. OSR5 ABI applications must have been compiled using the version in libc.so.1 to run on
Release 6 (applications linked with static archives are unsupported on Release 6).

Kernel and API Compatibility Notes 35

When an OSR5 ABI application using these calls is run on Release 6, these calls are mapped to the
setreuid(S) and setregid(S) functions.

2.2 API Compatibility

The API compatibility sections list each interface that is part of the documented APIs defined by the
various libraries and header files shipped with SCO OpenServer Release 6 that have substantial dif-
ferences from the same API on Release 5.

Each section describes the interface compatibility for OSR5 ABI applications as well as compatibility
considerations for applications compiled with the SVR5 ABI.

2.2.1 Manual Pages

The same UNIX function can sometimes be in different headers and/or libraries depending on the
platform. Use the man command to find the location of a function on SCO OpenServer 6:

$ man recv

recv(S)

recv -- receive a message from a socket

Synopsis

cc [options] file -lsocket -lnsl
#include <sys/types.h>
#include <sys/socket.h>
ssize_t recv(int socket, void *buf, size_t len,
int flags);
...

The top of the man page indicates the headers to use in the source code and the libraries to reference
in the makefile. Note that OSR5 API manual pages for libraries are generally available in manual
page sections with the suffix “-osr5”. For example, the OSR5 ABI Section (S) pages are available on
OpenServer 6 in Section (S-osr5).

You can also use DocView (http://localhost/cgi-bin/manform) to search for maual pages. If you
don’t find the page you are looking for on your local OpenServer 6 system, you can also check the
manual pages on the web:

• http://osr600doc.sco.com/en/Navpages/sectionlist.html

The complete OpenServer 6 documentation set, with all SVR5 ABI manual pages (and many
OSR5 ABI pages).

• http://osr507doc.sco.com/en/Navpages/sectionlist.html

The complete OpenServer 5.0.7 documentation set, with all OSR5 ABI manual pages.

http://osr507doc.sco.com/en/Navpages/sectionlist.html
http://osr600doc.sco.com/en/Navpages/sectionlist.html

36 OpenServer 6 Porting Guide

2.2.2 C library (libc) interfaces

The C library (libc) contains the system calls and C library routines described in the Section S manual
pages.

This “API Compatibility” on page 35 topic is concerned with libc function calls; for compatibility
information for system calls defined in libc (and compatibility for other basic system services), see
“Kernel compatibility” on page 23.

C library compatibility with earlier releases is provided through these libraries on Release 6:

Binary compatibility for OSR5 ABI-compiled binaries is provided through the /osr5/usr/lib/libc.so.1
version of libc, which is loaded by the dynamic linker for any executable that is appropriately marked
as an OSR5 binary (see elfmark(CP).

2.2.2.1 tm structure

The tm structure is used by various time functions in libc (asctime, asctime_r, ascftime, getdate,
gmtime, gmtime_r, localtime, localtime_r, mktime, strftime, strptime, wcsftime).

The tm structure on Release 5 has two elements at the end of the structure that are not present on
Release 6:

long tm_tzadj; /* seconds from UTC (east < 0) */
char tm_name[LTZNMAX]; /* name of timezone */

On Release 6, these values are available only in the external variables timezone and tzname, respec-
tively; these external variables are also available on Release 5. Portable applications should depend
only on the external variables, not on the structure elements.

2.2.2.2 confstr

The following values for the name argument to confstr (defined in unistd.h) are valid on Release 6
but not on Release 5:

/usr/ccs/lib/libc.so The Release 6 compile-time libc. This is the version used (by
default) by the Release 6 link editor. It defines the Release 6 libc
API.

/usr/lib/libc.so.1 The Release 6 run-time libc. This is the version of libc loaded by
the dynamic linker by default into every process on the system. It
defines the Release 6 libc API.

/osr5/usr/lib/libc.so.1 The Release 5 run-time libc. For OSR5 ABI applications only.
This is the version of libc loaded by the dynamic linker into
every process on the system that is running a binary marked as a
Release 5 binary.

_CS_HOSTNAME 2

Kernel and API Compatibility Notes 37

2.2.2.3 dlsym

The RTLD_NEXT argument for the handle parameter is unsupported on Release 5.

2.2.2.4 fnmatch

The Release 6 and Release 5 implementations of fnmatch differ in the header file declarations of
flags and return values found in fnmatch.h. Basically, the Release 6 interface is a superset of Release
5. Some constants are defined with different values; these are managed by the Release 6 kernel.

The Release 6 interface supports these additional flags:

#define FNM_BADRANGE 0x008/* accept [m-a] ranges as [ma] */
#define FNM_BKTESCAPE 0x010/* allow in []s to quote next anything */
#define FNM_EXTENDED 0x020 /* use full ksh-style patterns */
#define FNM_RETMIN 0x040/* return length of minimum match */
#define FNM_RETMAX 0x080/* return length of maximum match */
#define FNM_REUSE 0x100 /* reusing this FNM */
#define FNM_COMPONENT 0x200 /* only matching a component */
#define FNM_SUBEXPR 0x400 /* fill fnm_nsub, fnm_so[], fnm_eo[] */
#define FNM_UNANCHORED 0x800 /* match need not include string start */
#define FNM_NSUBEXPR 10 /* length of fnm_so[] and fnm_eo[] */

Also, the Release 6 interface supports one additional error:

#define FNM_ERROR (-4) /* internal error; probably allocation failure */

A portable application should use only those flags common to the two systems, or first determine the
system on which it is running and then use flags appropriate to that system.

2.2.2.5 ftw/nftw

The constants used as argument values for ftw and nftw (and defined in ftw.h) on Release 5 and

_CS_RELEASE 3

_CS_VERSION 4

_CS_MACHINE 5

_CS_ARCHITECTURE 6

_CS_HW_SERIAL 7

_CS_HW_PROVIDER 8

_CS_SRPC_DOMAIN 9

_CS_INITTAB_NAME 10

_CS_SYSNAME 11

38 OpenServer 6 Porting Guide

Release 6 are slightly different. A portable program should only use those values common to the two
systems or first determine the system on which it is running before issuing the call with appropriate
values.

The Release 6 values are a superset of the Release 5 values; the extensions provided are:

#define FTW_ERR 8 /* FTW_ERRORS only; internal nftw() failure */
#define _FTW_FINDDIR 020 /* continue even if getcwd() fails */
#define FTW_TRYCHDIR (FTW_CHDIR|_FTW_FINDDIR) /* for nftw() to try getcwd
*/
#define FTW_ERRORS 040 /* call fcn for nftw() internal errors, too */

2.2.2.6 glob/globfree

Release 6 and Release 5 have different constant and structure definitions in glob.h for the glob(S)
routine.

While the glob_t structure has elements on both systems not found on the other, these elements are
for system use only, and should not affect application compatibility.

/* SVR5 glob_t structure */
typedef struct {
struct gl_str *gl_str; /* for memory management */
char **gl_pathv; /* list of matched pathnames */
size_t gl_pathc; /* length of gl_pathv[] (less 1) */
size_t gl_offs; /* slots to reserve in gl_pathv[] */
} glob_t;

/* OSR5 glob_t structure */
typedef struct {
size_t gl_pathc; /* count of paths matched by pattern */
char **gl_pathv; /* pointer to list of matched pathnames */
size_t gl_offs; /* slots to reserve in gl_pathv[] */
/* Internal SCO variables */
size_t gl_vnum; /* Number of entries in gl_pathv */
size_t gl_vmax; /* Maximum entries in gl_pathv */
} glob_t;

The manifest constants supported on Release 6 are a superset of those provided on Release 5.

The additional constants are:

#define GLOB_FULLMARK 0x0080 /* append “/”, “@”, “*”, “|” like ls(1) */
#define GLOB_NOCOLLATE 0x0100 /* use “C” sorting order */
#define GLOB_OKAYDOT 0x0200 /* permit leading . to match specials */
#define GLOB_BADRANGE 0x0400 /* accept [m-a] ranges as [ma] */
#define GLOB_BKTESCAPE 0x0800 /* allow in []s to quote next anything */
#define GLOB_EXTENDED 0x1000 /* use full ksh-style patterns */

Some constants are defined with different values; these are managed by the Release 6 kernel for
OSR5 ABI applications.

Kernel and API Compatibility Notes 39

2.2.2.7 iconv

The implementation of iconv on Release 5 supports a flag mechanism that is not supported by
Release 6 (or by the X/Open standard). This mechanism allows you to set a flag in a state field in the
conversion descriptor used as input to iconv.

These flags (_ICONV_DELETE and _ICONV_COMP) and the state field in the conversion descrip-
tor are not supported by Release 6. OSR5 ABI binaries that run on Release 6 will fail if they attempt
to set the conversion descriptor state field with these flags.

2.2.2.8 isnan/isnand/isnanf

On Release 5, it is necessary to include nan.h, math.h, and ieeefp.h to compile a program using these
functions. On Release 6, nan.h does not exist, so include only math.h and ieeefp.h.

2.2.2.9 jmp_buf

On Release 5, the size of the jmp_buf used by longjmp and setjmp is defined in setjmp.h as 6; on
Release 6, it is 10. This presents no problem for source code portability. OSR5 ABI binaries that use
jmp_buf will run correctly on Release 6.

2.2.2.10 mallinfo

The Release 5 implementation of mallinfo is available only in libc.a.

2.2.2.11 nl_langinfo

The header file langinfo.h on Release 6 contains a larger set of manifest constants than the same
header file on Release 5. A portable application should only expect the constants that are defined on
both systems to be available.

The additional constants defined on Release 6 in langinfo.h are:

#define _MAXSTRMSG 57 /* Maximum number of strings in langinfo */
#define QUITSTR 58 /* “yes, go away” answer */
#define QUITEXPR 59 /* “go away” response ERE string */
#define DATECMD_FMT 60 /* format string used by date(1) */
#define CHARCLASS61 /* all valid wctype() strings, ;-separated */

Also, some constants are defined with different values; these are managed by the Release 6 kernel for
OSR5 ABI applications.

2.2.2.12 passwd structure

Several routines make use of the passwd structure defined in pwd.h. This structure contains two
members (pw_uid and pw_gid) whose types (uid_t and gid_t, respectively) are defined differently
depending on the operating system.

40 OpenServer 6 Porting Guide

On Release 6, uid_t and gid_t are both defined as long; on Release 5, they are both unsigned
short. The Release 5 implementation makes up for this difference by adding two pad fields to the
passwd structure, as shown below:

uid_t pw_uid;/* user ID */
short __pad1;/* padded space */
gid_t pw_gid;/* group ID */
short __pad2;/* padded space */

2.2.2.13 sigset_t

On Release 5, the sigset_t data type (use by the functions sigaddset, sigdelset, sigemptyset, sig-
fillset, and sigismember) is declared a long in sys/signal.h. On Release 6, it is declared as follows:

typedef struct { /* signal set type */
unsigned int sa_sigbits[4];
} sigset_t;

The Release 6 kernel will put data from an OSR5 ABI binary into the Release 6 structure before exe-
cuting the function.

Also see “setcontext(2)” on page 32.

2.2.2.14 sysconf

The following Release 5 sysconf commands are not supported on Release 6:

_SC_32BIT_INODES
_SC_FSYNC
_SC_KERNEL_PROC
_SC_KERNEL_PROC_MAX
_SC_KERNEL_REGION
_SC_KERNEL_REGION_MAX
_SC_KERNEL_FILE
_SC_KERNEL_FILE_MAX
_SC_KERNEL_INODE
_SC_KERNEL_INODE_MAX
_SC_KERNEL_S5INODE
_SC_KERNEL_S5INODE_MAX
_SC_KERNEL_DISK
_SC_KERNEL_DISK_MAX
_SC_KERNEL_CLIST
_SC_KERNEL_CLIST_MAX
_SC_KERNEL_DMABUF
_SC_KERNEL_DMABUF_MAX
_SC_KERNEL_MOUNT
_SC_KERNEL_MOUNT_MAX
_SC_KERNEL_FLCKREC
_SC_KERNEL_FLCKREC_MAX
_SC_KERNEL_PINODE
_SC_KERNEL_PINODE_MAX
_SC_MAPPED_FILES

Kernel and API Compatibility Notes 41

2.2.2.15 ttyslot

The file accessed by ttyslot on Release 5 is /var/utmp, while on Release 6 it is /var/adm/utmp. For
OSR5 ABI binaries on Release 6, the kernel directs the program to the proper file.

2.2.3 BSD library (libucb) interface

The BSD Compatibility library (libucb) is present on SCO OpenServer 6, but it is usually not needed
since many of the functions in this library are now in the native Release 6 libraries as well.

2.2.4 Threads and asynchronous I/O (libthread) interfaces

POSIX threads (libpthread) are documented on the Section PTHREAD manual pages.

The SVR5 threads library interfaces (libthread), which include the asynchronous I/O routines, are
documented in the Section THREAD manual pages and Section AIO manual pages. Note that the
asynchronous I/O routines on Release 5 that correspond to the routines documented in the Release 6
Section AIO manual pages, are part of libsuds on Release 5, and are not supported for OSR5 ABI
binaries running on Release 6. The libsuds library and its versions of these routines are also not sup-
ported by the SVR5 ABI.

2.2.5 Network support library (libnsl) interfaces

2.2.5.1 AUTH structure

The AUTH structure (see /usr/include/rpc/auth.h) has an extra element (a des_block structure) that
is not in the Release 5 implementation.

2.2.5.2 CLIENT structure

The CLIENT structure (see /usr/include/rpc/clnt.h) has elements not in the Release 5 implementa-
tion.

2.2.5.3 Berkeley style client calls

These calls (callrpc, clnttcp_create, clntudp_create, clntudp_bufcreate, and clntraw_create) are
present in libnsl on Release 6 for compatibility only and are undocumented. To compile a program
that uses them, you must include the /usr/include/rpc/clnt_soc.h header file. On Release 6 these client
interfaces are replaced by the rpc_clnt_create(S) interfaces.

These calls also access the CLIENT structure; see above.

2.2.5.4 Portmapper

These interfaces (pmap_set, pmap_unset, pmap_rmtcall, pmap_getmaps, pmap_getport, and
clnt_broadcast) are present in libnsl on Release 6 for compatibility only and are undocumented. To
compile a program that uses them, you must include the /usr/include/rpc/pmap_clnt.h header file. On

42 OpenServer 6 Porting Guide

Release 6, the rpcbind(S) interfaces replace the portmapper interfaces.

2.2.5.5 Berkeley style service calls

These calls (svcfd_create, svcraw_create, svctcp_create, svcudp_bufcreate, svcudp_create, and
svcudp_enablecache) are present in libnsl on Release 6 for compatibility only and are undocu-
mented. To compile a program that uses them, you must include the /usr/include/rpc/svc_soc.h
header file. On Release 6 these client interfaces are replaced by the rpc_svc_create(S) interfaces.

These calls also access the SVCXPRT structure; see below

2.2.5.6 SVCXPRT structure

The SVCXPRT structure (see /usr/include/rpc/svc.h) has elements not in the Release 5 implementa-
tion. This affects the folowing routines: svcerr_auth, svcerr_decode, svcerr_noproc,
svcerr_noprog, svcerr_progvers, svcerr_systemerr, and svcerr_weakauth.

2.2.6 Transport interface (XTI and TLI)

SCO OpenServer Release 5 and Release 6 both support the X/Open Transport Interface (XTI) and the
Transport Level Interface (TLI). Both XTI and TLI are APIs that allow user processes to access trans-
port providers in a (mostly) transport-independent fashion.

The Transport Level Interface was modeled after the industry standard ISO Transport Service Defini-
tion (ISO 8072). The resulting interface was called the Transport Level Interface (TLI) library, first
introduced with AT&T UNIX System V Release 3.0 in 1986.

XTI is the X/Open-sponsored successor to TLI, and is defined in the Networking Services, Issue 5
document.

From the standpoint of syntax and semantics, the two libraries are nearly identical, but XTI is the pre-
ferred interface for new applications, since it is the industry standard. The TLI library routines are
maintained for compatibility with previous releases only.

The Release 6 transport level functions are defined in libnsl and support both the older TLI semantics
and the newer XTI semantics. The library entry points have their traditional names for the TLI func-
tions, such as t_open. For the XTI functions, however, the entry points have new names, such as
_xti_open. When applications are compiled with the SVR5 ABI, the TLI function names are trans-
lated to the XTI entry points by macros by including the file xti.h in the source code.

In this way, Release 6 is able to support older applications that use the TLI interface, while still pro-
viding the new XTI interface.

To compile and link a program using XTI semantics, do the following:

1. Include the xti.h header file at the beginning of your source files. The syntax of the include pre-
processor directive to use is:

#include <xti.h>

Kernel and API Compatibility Notes 43

2. Specify the libnsl library as one of the libraries to be searched on the cc command line:

cc option file -lnsl

To compile a program using the TLI interfaces exclusively, include the TLI header file (tiuser.h)
instead of the XTI header file. The syntax of the include preprocessor directive to use is:

#include <tiuser.h>

2.2.7 Sockets interface

SCO OpenServer Release 5 and Release 6 support the sockets interface. Although there are many
similarities between the implementations, the differences are significant enough that a compatibility
library is provided in /osr5/usr/lib so that OSR5 ABI binaries can run on Release 6 without modifica-
tion.

The default action on Release 6 is UNIX95 sockets behavior; this essentially translates to linking
with /usr/lib/libsocket.so.2.

To compile and link a program using SVR5 sockets, do the following:

1. Include the following header files at the beginning of your source files. The syntax of the include
preprocessor directives to use are:

#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>

2. Specify the libsocket and libnsl libraries as two of the libraries to be searched on the cc command
line, in the order shown:

cc -lsocket -lnsl ...

or use:

cc -lxnet ...

2.2.7.1 Socket addressing

The type of socket address structure passed to a socket routine depends on the address and protocol
families used by your application.

44 OpenServer 6 Porting Guide

2.2.7.2 accept

In Release 5, the *addrlen parameter is an int. In Release 6, it is declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

Release 5 can return EFAULT (the addr parameter is not in a writable part of the user address space),
which is not returned by Release 6.

2.2.7.3 bind

In Release 5, the *namelen parameter is an int. In Release 6, it is declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

SVR5 AF_UNIX
AF_INET
AF_INET6

AF_UNIX requires a socketaddr_un structure as defined in sys/un.h.
AF_INET requires a sockaddr_in structure as defined in netinet/in.h.
AF_INET6 requires a sockaddr_in6 structure as defined in netinet/in6.h.
Each of these Release 6 sockaddr structures have been modified to sup-
port variable length sockets. The net result of this modification is that the
family member has been shortened to 8 bits and a new 8-bit member
inserted before it called len.

OSR5 AF_UNIX
AF_INET

AF_UNIX requires a socketaddr_un structure as defined in sys/un.h.
AF_INET requires a sockaddr_in structure as defined in netinet/in.h.
Variable length sockets are not supported.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to
be accepted.

EPROTO A protocol error has occurred; for example, the STREAMS protocol
stack has not been initialized.

ENODEV The protocol family and type corresponding to s could not be found in the
netconfig file.

ENOMEM There was insufficient user memory available to complete the operation.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

EINVAL namelen is not the size of a valid address for the specified address
family.

ENOSR There were insufficient STREAMS resources for the operation to
complete.

Kernel and API Compatibility Notes 45

Release 5 can return EFAULT (the name parameter is not in a valid part of the user address space),
which is not returned by Release 6.

2.2.7.4 connect

In Release 5, the third parameter is called *namelen and is an int. In Release 6, it is called
*address_len and is declared as size_t. The parameters have the same use (i.e., they contain the
length of the previous calling parameter).

Release 6 can return these additional errors (which are not returned by Release 5):

EAFNOSUPPORT The specified address is not a valid address for the address family
of the specified socket.

EOPNOTSUPP The socket type of the specified socket does not support binding to
an address.

EISCONN The socket is already connected.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOBUFS Insufficient resources were available to complete the call.

ENOTDIR A component of the path prefix of the pathname in name is not a
directory.

ENOENT A component of the path prefix of the pathname in name does not
exist, or the pathname is an empty string.

EACCES Search permission is denied for a component of the path prefix of
the pathname in name, or the requested name requires writing in a
directory with a mode that denies write permission.

ELOOP Too many symbolic links were encountered in translating the path-
name in name.

ENAMETOOLONG A component of the pathname exceeded NAME_MAX characters,
or an entire pathname exceeded PATH_MAX characters.

EIO An I/O error occurred while making the directory entry or allocat-
ing the inode.

EROFS The inode would reside on a read-only file system.

EISDIR A null pathname was specified.

EALREADY A connection request is already in progress for the specified socket.

46 OpenServer 6 Porting Guide

2.2.7.5 ether_aton

This returns an ether_addr_t (unsigned char) on Release 6, while it returns an ether_addr struc-
ture (which has one member of type ether_addr_t) on Release 5.

2.2.7.6 ether_hostton

This function takes an ether_addr_t (unsigned char) parameter on Release 6, while it takes an
ether_addr structure (which has one member of type ether_addr_t) on Release 5.

EINPROGRESS The socket is non-blocking and the connection cannot be completed imme-
diately; the connection will be established asynchronously.

EINTR The connection attempt was interrupted before any data arrived by the
delivery of a signal. The connection will be established asynchronously.

EPROTOTYPE The file referred to by address is a socket of a type other than the socket
bound to the specified peer address.

ECONNRESET The remote host reset the connection request.

EINVAL address_len is not the size of a valid address for the specified address fam-
ily, or invalid address family in sockaddr structure.

ENAME-
TOOLONG

Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENETDOWN The local interface used to reach the destination is down.

ENOBUFS No buffer space is available.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

ENOTDIR A component of the path prefix of the pathname in address is not a direc-
tory.

ENAME-
TOOLONG

A component of a pathname exceeded NAME_MAX characters or an entire
pathname exceeded PATH_MAX.

EACCES Search permission is denied for a component of the path prefix or write
access to the named socket is denied.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating the pathname in
address.

ENOENT A component of the pathname does not name an existing file or the path-
name is an empty string.

Kernel and API Compatibility Notes 47

2.2.7.7 ether_line

This function takes an ether_addr_t (unsigned char) parameter on Release 6, while it takes an
ether_addr structure (which has one member of type ether_addr_t) on Release 5.

2.2.7.8 ether_ntoa

This function takes an ether_addr_t (unsigned char) parameter on Release 6, while it takes an
ether_addr structure (which has one member of type ether_addr_t) on Release 5.

2.2.7.9 ether_ntohost

This function takes an ether_addr_t (unsigned char) parameter on Release 6, while it takes an
ether_addr structure (which has one member of type ether_addr_t) on Release 5.

2.2.7.10 ftruncate/truncate

These functions appear as system calls in libc on Release 6 and Release 5; Release 5 also provides
versions of these in the sockets library.

2.2.7.11 getpeername/setpeername

In Release 5, the *namelen parameter is an int. In Release 6, it is declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

2.2.7.12 getsockname/setsockname

In Release 5, the *namelen parameter is an int. In Release 6, it is declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to complete.

EINVAL The socket has been shut down.

EOPNOTSUPP The operation is not supported for this socket's protocol.

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to complete.

EINVAL The socket has been shut down.

48 OpenServer 6 Porting Guide

2.2.7.13 getsockopt/setsockopt

In Release 5, the *optlen parameter is an int. In Release 6, it is declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

The following options are provided on Release 5, but are not supported on Release 6:

2.2.7.14 gettimeofday/settimeofday

These routines are implemented as system calls in Release 6. On Release 5, they are implemented as
routines in the libsocket library, as well as system calls (in libc).

The syntax of the system call on Release 6 is:

#include <sys/time.h>
int gettimeofday(struct timeval *tp, void *reserved);
int settimeofday(struct timeval *tp, void *reserved);

where the second parameter is required to be NULL.

On Release 5, the system call syntax is:

#include <sys/time.h>
int gettimeofday(struct timeval *tp);
int settimeofday(struct timeval *tp);

The Release 5 libsocket routine’s syntax is:

#include <sys/time.h>
int gettimeofday(struct timeval *tp , struct timezone *tpz);
int settimeofday(struct timeval *tp , struct timezone *tpz);

The timeval structures used are the same on each platform; but the timezone structure is unique to
the Release 5 libsocket routines (and any data it contains is ignored on the other platforms):

struct timezone {
int tz_minuteswest; /* of Greewich */

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to complete.

SO_REUSEPORT toggle on/off local port reuse

SO_SNDLOWAT set low-water mark for output

SO_RCVLOWAT set low-water mark for input

SO_PROTOTYPE get/set the protocol number associated with the stream

Kernel and API Compatibility Notes 49

int tz_dsttime; /* type of dst correction to apply */
};

2.2.7.15 listen

Release 6 can return these additional errors (which are not returned by Release 5):

2.2.7.16 netgroup

The netgroup routines (endnetgrent, getnegrent, setnetgrent, innetgr) on Release 5 require that
the Network Information Service (NIS) is running for these routines to return successfully.

This is not a requirement on Release 5, on which these routines also check the file /etc/netgroup for
network group information.

2.2.7.17 recv/recvfrom/recvmsg

1. The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame-
ters. The Release 6 structure is defined in sys/socket.h and includes the following members:

void * msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec * msg_iov; /* scatter/gather array */
int msg_iovlen; /* number of elements in msg_iov */
void * msg_accrights; /* access rights sent/received */
int msg_accrightslen;
void * msg_control;
size_t msgcontrollen;
int msg_flags;

In Release 5, this structure is defined as follows:

caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_control; /* control information sent/received */
int msg_controllen; /* size of control information */
int msg_flags; /* size of control information */

2. The use of the cmsghdr structure for control data along with the CMSG macros are supported in
Release 5 and Release 6. In Release 5 the cmsghdr structure is defined as:

EINVAL The socket is already connected or has been shut down.

EDESTADDRREQ The socket is not bound to a local address, and the protocol does not sup-
port listening on an unbound socket.

ENOBUFS System resources are insufficient to complete the call.

50 OpenServer 6 Porting Guide

int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
u_int cmsg_len; /* data byte count, including hdr */

In Release 6 the cmsghdr structure is defined as:

size_t cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

3. Release 6 can return these additional errors (not returned on Release 5):

2.2.7.18 select

On Release 5, the FD_SETSIZE constant is normally defined in sys/types.h as either 150 or 11000;
on Release 6, the value of FD_SETSIZE is 4096. See select(S).

2.2.7.19 send/sendto

In Release 5, the *len and *tolen meters are int values. In Release 6, they are declared as size_t.

Release 6 can return these additional errors (which are not returned by Release 5):

ECONNRESET A connection was forcibly closed by a peer.

ENOTSOCK socket is a descriptor for a file, not a socket.

EINTR The operation was interrupted by delivery of a signal before any data was
available to be received.

EINVAL MSG_OOB is set and there is no available out-of-band data.

ENOTCONN A receive is attempted on a connection-oriented socket that is not con-
nected.

EWOULDBLOCK The socket is marked non-blocking and the requested operation would
block.

EOPNOTSUPP The specified flags are not supported for this socket type or protocol.

ETIMEDOUT The connection timed out during connection or because of a transmission
timeout on active connection.

EIO An I/O error occurred while reading to or writing from the file system.

ENOBUFS System resources were insufficient to perform the operation.

ENOMEM There was insufficient user memory available for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to complete.

EINVAL tolen is not the size of a valid address for the specified address family.

Kernel and API Compatibility Notes 51

See ‘‘recv/recvfrom/recvmsg’’ for a description of platform differences in the msghdr structure.

2.2.7.20 shutdown

Release 6 can return these additional errors (which are not returned by Release 5):

2.2.7.21 socket

Release 6 can return these additional errors (which are not returned by Release 5):

Release 5 can return these additional errors (which are not returned by Release 6):

The protocol families and types differ between the systems. On Release 6, the AF_INET6 and
PF_KEY protocol families are supported, in addition to the AF_UNIX and AF_INET protocol fami-
lies supported on Release 5.

Release 6 supports the SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, SOCK_SEQPACKET,
and SOCK_RDM socket types; Release 5 supports only SOCK_STREAM, SOCK_DGRAM, and
SOCK_RAW.

EINTR The operation was interrupted by delivery of a signal before any data could
be buffered to be sent.

EWOULDBLOCK The socket is marked non-blocking and the requested operation would
block.

ENOMEM There was insufficient user memory available for the operation to com-
plete.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOMEM There was insufficient user memory available for the operation to complete.

ENOBUFS System resources were insufficient to perform the operation.

ENOSR There were insufficient STREAMS resources available for the operation to com-
plete.

ENOMEM Insufficient user memory is available.

EPROTONOSUPPORT Protocol not supported.

EMFILE The system file table is full. (Release 5 returns ENFILE instead.)

ENFILE The system file table is full. (Release 6 returns EMFILE instead.)

52 OpenServer 6 Porting Guide

2.2.7.22 openlog

On Release 5, /usr/include/sys/syslog.h contains the following facilities definitions:

#define LOG_CRON (9<<3) /* clock daemon */
#define LOG_AUTHPRIV (10<<3) /* security/authorization msgs (private) */

On Release 6, the above lines are omitted, and the following appear instead:

#define LOG_LFMT (14<<3) /* logalert facility */
#define LOG_CRON (15<<3) /* cron/at subsystem */

2.2.8 Name resolution (libresolv) library routines

The resolver library routines in Release 6 are based on the BIND 9 distribution. For OSR5 ABI
applications there are no compatibility impacts beyond the relocation of the routines from libsocket
to the libresolv library, which is a concern for source code compilation on Release 6 only.

There are differences in resolver options and the _res data structure that holds them that span the use
of most of these routines. These impact source compatibility for SCO OpenServer Release 5 applica-
tions being recoded to use the SVR5 ABI.

2.2.9 File transfer protocol (ftp) interface

SCO OpenServer Release 5 and Release 6 support the Internet file transfer protocol (FTP) interface
developed for SCO OpenServer; this interface is defined in /usr/lib/libftp.so. Source code that uses
this interface will compile on Release 6 without any changes.

To compile and link a program that uses the FTP interface, do the following:

1. Include the libftp.h header file at the beginning of your source files. The syntax of the include pre-
processor directive to use is:

#include <net/libftp.h>

2. Specify the libftp library as one of the libraries to be searched on the cc command line:

cc options file -lftp

2.2.10 STREAMS interface

The STREAMS interface on SCO OpenServer Release 5 and Release 6 are fundamentally the same,
with the major differences in the stream head ioctl commands.

On all systems, STREAMS the interface is implemented through a set of system calls and ioctl com-
mands (issued using the ioctl system call).

Note that applications compiled with the SCO OpenServer Development System must define
_SVID3 in the source in order to use the following ioctl commands:

I_ATMARK

Kernel and API Compatibility Notes 53

I_CANPUT
I_CKBAND
I_FLUSHBAND
I_GETBAND
I_GETCLTIME
I_GWROPT
I_LIST
I_PLINK
I_PUNLINK
I_SETCLTIME
I_SWROPT

2.2.10.1 I_GETCLTIME

This ioctl returns the close time delay in a long on Release 6; on Release 5 it is returned in an int.

2.2.10.2 I_RECVFD

The uid and gid members of the strrecvfd structure are defined as uid_t and gid_t (that is, long)
on Release 6; on Release 5 they are both defined as an unsigned short.

2.2.10.3 I_S_RECVFD

This ioctl command is not supported on Release 5.

2.2.10.4 I_SETSIG

For the S_BANDBURG event subcommand, Release 6 returns SIGURG, while Release 5 returns
SIGUSR1.

2.2.11 Event queue (libevent) interface

The Release 6 event library (libevent.so) is a direct port of the SCO OpenServer Release 5 event API,
which allows applications to obtain device events directly.

Essentially, these routines allow a program to manage device events through an event queue. Devices
such as mice or keyboards may be read through an event queue. For more information, see the man-
ual pages for the ev_* (ev_block, ev_init, etc.) routines in Section S-osr5.

The event interface is not part of any current industry standard.

2.2.12 SNMP (libsnmp) interface

The version of libsnmp supported on Release 6 implements SNMP Version 1 (SNMPv1).

The Release 5 version of libsnmp (included in /osr5/usr/lib) is supported on Release 6 for Release 5
binaries only. By default, the Release 5 library implements SNMP Version 2 (SNMPv2), unless the
application is compiled with either SNMPV1 or SNMPV1_ONLY set.

54 OpenServer 6 Porting Guide

The header files for SNMP are found in /usr/include/snmp on Release 5, and in /usr/include/netmgt
on Release 6.

Source compatibility for every one of these calls is affected by differences in the data structures used
by the SCO OpenServer Release 5 and Release 6 implementations. See the following sections for
details:

• ‘‘Object identifier (OID) structure’’

• ‘‘Object type (OT) structure’’

• ‘‘SCO OpenServer 64 bit counters’’

• ‘‘Aggregate structure’’

2.2.12.1 make_varbind

The implementation of make_varbind on Release 5 is as follows:

VarBindList make_varbind(OID oid_ptr, short type, unsigned long ul_value,
long sl_value, OctetString os_value, OID oid_value, Counter64 *c64_value);

The Counter64 data type as well as the *c64_value parameter to this function are not supported on
Release 6.

There are differences in VarBindList types and error returns between SCO OpenServer Release 6
and Release 5 that impact source compatibility. The Release 5 definitions in snmp.h are:

/* Universal’s */
#define INTEGER_TYPE 0x02
#define GET_REQUEST_TYPE 0xA0
#define GET_NEXT_REQUEST_TYPE 0xA1
#define GET_RESPONSE_TYPE 0xA2
#define SET_REQUEST_TYPE 0xA3
#define TRAP_TYPE 0xA4 /* obsolete */
#define GET_BULK_REQUEST_TYPE 0xA5
#define INFORM_REQUEST_TYPE 0xA6
#define V2_TRAP_TYPE 0xA7
#define BITSTRING_TYPE 0x03
#define OCTET_PRIM_TYPE 0x04
#define DisplayString OCTET_PRIM_TYPE
#define NULL_TYPE 0x05
#define OBJECT_ID_TYPE 0x06
#define OCTET_CONSTRUCT_TYPE 0x24
#define SEQUENCE_TYPE 0x30
#define Aggregate 0xFF
/* Primitive context’s */
#define NO_SUCH_OBJECT 0x80
#define NO_SUCH_INSTANCE 0x81
#define END_OF_MIB_VIEW 0x82
/* Application’s */
#define IP_ADDR_PRIM_TYPE 0x40
#define COUNTER_TYPE 0x41

Kernel and API Compatibility Notes 55

#define GAUGE_TYPE 0x42
#define TIME_TICKS_TYPE 0x43
#define OPAQUE_PRIM_TYPE 0x44
#define IP_ADDR_CONSTRUCT_TYPE 0x60
#define OPAQUE_CONSTRUCT_TYPE 0x64
#define NSAP_ADDR_TYPE 0x45
#define COUNTER64_TYPE 0x46
#define UINTEGER_TYPE 0x47
/* SNMPv2 message related types */
#define PRIV_MSG_TYPE 0xA1
#define PRIV_DATA_TYPE 0x81
#define AUTH_MSG_TYPE 0xA1
#define MD5_AUTH_INFO_TYPE 0xA2
#define NO_AUTH_INFO_TYPE 0x04
#define MGMT_COM_TYPE 0xA2
/* Application’s SMUX */
#define SMUX__PDUs_simple 0x60
#define SMUX__PDUs_close 0x41
#define SMUX__PDUs_registerRequest 0x62
#define SMUX__PDUs_registerResponse 0x43
#define SMUX__PDUs_get__request 0xA0
#define SMUX__PDUs_get__next__request 0xA1
#define SMUX__PDUs_get__response 0xA2
#define SMUX__PDUs_set__request 0xA3
#define SMUX__PDUs_trap 0xA4
#define SMUX__PDUs_commitOrRollback 0x44
/* Error codes */
#define NO_ERROR 0
#define TOO_BIG_ERROR 1
#define NO_SUCH_NAME_ERROR 2
#define BAD_VALUE_ERROR 3
#define READ_ONLY_ERROR 4
#define GEN_ERROR 5
#define NO_ACCESS 6
#define WRONG_TYPE 7
#define WRONG_LENGTH 8
#define WRONG_ENCODING 9
#define WRONG_VALUE 10
#define NO_CREATION 11
#define INCONSISTENT_VALUE 12
#define RESOURCE_UNAVAILABLE 13
#define COMMIT_FAILED 14
#define UNDO_FAILED 15
#define AUTHORIZATION_ERROR 16
#define NOT_WRITEABLE 17
#define INCONSISTENT_NAME 18

The Release 6 definitions (from /usr/include/netmgt/snmp.h) are:

/* Universal’s */
#define INTEGER_TYPE 0x02
#define OCTET_PRIM_TYPE 0x04

56 OpenServer 6 Porting Guide

#define DisplayString OCTET_PRIM_TYPE
#define NULL_TYPE 0x05
#define OBJECT_ID_TYPE 0x06
#define OCTET_CONSTRUCT_TYPE 0x24
#define SEQUENCE_TYPE 0x30
#define Aggregate 0xFF
/* Application’s */
#define IP_ADDR_PRIM_TYPE 0x40
#define COUNTER_TYPE 0x41
#define GAUGE_TYPE 0x42
#define TIME_TICKS_TYPE 0x43
#define OPAQUE_PRIM_TYPE 0x44
#define IP_ADDR_CONSTRUCT_TYPE 0x60
#define OPAQUE_CONSTRUCT_TYPE 0x64
/* Context’s */
#define GET_REQUEST_TYPE 0xA0
#define GET_NEXT_REQUEST_TYPE 0xA1
#define GET_RESPONSE_TYPE 0xA2
#define SET_REQUEST_TYPE 0xA3
#define TRAP_TYPE 0xA4
/* Application’s SMUX */
#define SMUX__PDUs_simple 0x60
#define SMUX__PDUs_close 0x41
#define SMUX__PDUs_registerRequest 0x62
#define SMUX__PDUs_registerResponse 0x43
#define SMUX__PDUs_get__request 0xA0
#define SMUX__PDUs_get__next__request 0xA1
#define SMUX_GET_REQUEST_TYPE GET_REQUEST_TYPE
#define SMUX_GET_NEXT_REQUEST_TYPE GET_NEXT_REQUEST_TYPE
#define SMUX_GET_RESPONSE_TYPE GET_RESPONSE_TYPE
#define SMUX_SET_REQUEST_TYPE SET_REQUEST_TYPE
#define SMUX_TRAP_TYPE TRAP_TYPE
#define SMUX__PDUs_get__response 0xA2
#define SMUX__PDUs_set__request 0xA3
#define SMUX__PDUs_trap 0xA4
#define SMUX__PDUs_commitOrRollback 0x44
#define SMUX_SIMPLE_TYPE 0x60
#define SMUX_CLOSE_TYPE 0x41
#define SMUX_REG_REQUEST_TYPE 0x62
#define SMUX_REG_RESPONSE_TYPE 0x43
#define SMUX_SOUT_TYPE 0x44
/* Error codes */
#define NO_ERROR 0
#define TOO_BIG_ERROR 1
#define NO_SUCH_NAME_ERROR 2
#define BAD_VALUE_ERROR 3
#define READ_ONLY_ERROR 4
#define GEN_ERROR 5

2.2.12.2 parse_pdu

On Release 5, the parse_pdu routine is passed a packet and length argument, as follows:

Pdu *parse_pdu(u_char **packet, long *length)

Kernel and API Compatibility Notes 57

On Release 6, it is passed an AuthHeader structure:

Pdu *parse_pdu(AuthHeader *auth_ptr);
typedef struct _AuthHeader {

OctetString *packlet;
unsigned long version;
OctetString *community;

} AuthHeader;

The routines are identical for applications compiled on Release 5 with SNMPV1 or SNMPV1_ONLY
set.

2.2.13 SNMP I/O (libsnmpio) interface

The version of libsnmpio supported on Release 6 implements SNMPv1.

The Release 5 version of libsnmpio (included in /osr5/usr/lib) is supported on Release 6 for Release 5
binaries only.

The header files for SNMP are found in /usr/include/snmp on Release 5, and in /usr/include/netmgt
on Release 6.

2.2.13.1 get_response

This routine is defined on Release 5 as follows:

int
get_response(fd, src, in_packet, in_packet_len, timeout);
int fd;
struct sockaddr_in *src;
u_char *in_packet;
long *in_packet_len;
int timeout;

It is defined on Release 6 as:

int get_response(int seconds);

8.2.11.2 initialize_io

This routine is defined on Release 5 as follows:

int
initialize_io(program_name, name, sin);
char *program_name;
char *name;
struct sockaddr_in *sin;

It is defined on Release 6 as:

58 OpenServer 6 Porting Guide

void initialize_io(char program_name, char name);

2.2.13.2 send_request

This routine is defined on Release 5 as follows:

int
send_request(fd, dst, out_packet, out_packet_len);
int fd;
struct sockaddr_in *dst;
u_char *out_packet;
long out_packet_len;

It is defined on Release 6 as:

int send_request(int socket, AuthHeader auth_pointer);

2.2.14 SMUX (libsmux) interface

The version of libsmux supported on Release 6 implements SNMPv1.

The Release 5 version of libsmux (included in /osr5/usr/lib) is supported on Release 6 for Release 5
binaries only.

The header files for SNMP are found in /usr/include/snmp on Release 5, and in /usr/include/netmgt
on Release 6.

Source compatibility for every one of these calls is affected by differences in the data structures used
by the Release 5 and Release 6 implementations. See the following sections for details:

• ‘‘Object identifier (OID) structure’’

• ‘‘Object type (OT) structure’’

• ‘‘SCO OpenServer 64 bit counters’’

• ‘‘Aggregate structure’’

2.2.14.1 Object identifier (OID) structure

On Release 5, the length element of the OID structure is a long, on Release 6 it is a short.

2.2.14.2 Object type (OT) structure

The object_type (OT) structure is defined differently on Release 5 and Release 6.

The OT structure on Release 5 is defined as follows:

typedef struct object_type {
char *ot_text; /* OBJECT DESCRIPTOR */
char *ot_id; /* OBJECT IDENTIFIER */
OID ot_name; /* .. */

Kernel and API Compatibility Notes 59

OS ot_syntax; /* SYNTAX */
int ot_access; /* ACCESS */
#define OT_NONE 0x00
#define OT_RDONLY 0x01
#define OT_WRONLY 0x02
#define OT_RDWRITE (OT_RDONLY | OT_WRONLY)
#define OT_RDCREAT (0x04 | OT_RDWRITE)
u_long ot_views; /* for views */
int ot_status; /* STATUS */
#define OT_NONE 0x00
#define OT_OBSOLETE 0x01
#define OT_CURRENT 0x02
#define OT_OPTIONAL 0x03
#define OT_DEPRECATED 0x04
caddr_t ot_info; /* object information */
ot_getfunc ot_getfnx; /* get/get-next method */
ot_setfunc ot_setfnx; /* set method */
#define type_SNMP_PDUs_commit (-1)
#define type_SNMP_PDUs_rollback (-2)
caddr_t ot_save; /* for set method */
int ot_range; /* close enough */
int ot_lendpoint; /* .. */
int ot_rendpoint; /* .. */
char *ot_index; /* INDEX */
char *ot_augments; /* or AUGMENTS */
caddr_t ot_iit; /* .. */
caddr_t ot_smux; /* for SMUX */
struct object_type *ot_chain; /* hash-bucket for text2obj */
struct object_type *ot_sibling; /* linked-list for name2obj */
struct object_type *ot_children; /* .. */
struct object_type *ot_next; /* linked-list for get-next */

} object_type, *OT;

On Release 6, the structure is declared as follows:

typedef struct object_type {
char *ot_text; /* OBJECT DESCRIPTOR */
char *ot_id; /* OBJECT IDENTIFIER */
OID ot_name; /* .. */
OS ot_syntax; /* SYNTAX */
int ot_access; /* ACCESS */
#define OT_NONE 0x00
#define OT_RDONLY 0x01
#define OT_WRONLY 0x02
#define OT_RDWRITE (OT_RDONLY | OT_WRONLY)
unsigned long ot_views; /* for views */
int ot_status; /* STATUS */
#define OT_OBSOLETE 0x00
#define OT_MANDATORY 0x01
#define OT_OPTIONAL 0x02
#define OT_DEPRECATED 0x03
caddr_t ot_info; /* object information */

60 OpenServer 6 Porting Guide

IFP ot_getfnx; /* get/get-next method */
IFP ot_setfnx; /* set method */
#define type_SNMP_PDUs_commit (-1)
#define type_SNMP_PDUs_rollback (-2)
caddr_t ot_save; /* for set method */
caddr_t ot_smux; /* for SMUX */
struct object_type *ot_chain; /* hash-bucket for text2obj */
struct object_type *ot_sibling;/* linked-list for name2obj */
struct object_type *ot_children; /* .. */
struct object_type *ot_next; /* linked-list for get-next */

} object_type, *OT;

In addition, the OS structure has some extra elements on Release 5:

typedef struct syntax {
char *os_name; /* syntax name */
int os_type; /* syntax type */
os_decode_func os_decode; /* PE -> data */
os_free_func os_free; /* free data */
char *os_textual; /* for textual conventions */
char *os_display; /* for textual conventions */
struct enum_syntax *os_enum; /* for enumerations */

} *OS;

The Release 6 version of the OS structure is:

typedef struct object_syntax {
char *os_name; /* syntax name */
int os_type; /* syntax type */
IFP os_decode; /* PE -> data */
IFP os_free; /* free data */
} *OS;

2.2.14.3 SCO OpenServer 64 bit counters

Objects of type Counter64 and the Counter64 structure are not supported on Release 6, but are sup-
ported on Release 5.

The Release 5 ObjectSyntax structure has an extra c64_value element not supported on Release 6.

2.2.14.4 Aggregate structure notes

A number of aggregate structures, such as those listed below, are affected by changes to lowerlevel
structures.

For example, the OI structure is declared identically in both Release 5 and Release 6; but the structure
members are of type OID and OT, which do have implementation differences.

The affected data structures are:

• OI/OIDentifier

Kernel and API Compatibility Notes 61

• all types of the form type_SNMP_VarBind, type_SNMP_VarBindList, type_SNMP_ObjectName,
free_SNMP_ObjectName, type_SNMP_ObjectSyntax, and free_SNMP_ObjectSyntax and any
structures declared of these types

• VarBindList and VarBindUnit

• Pdu, and all types ending in PDU and PDUs

See the header file /usr/include/netmgt/snmp.h and the sections ‘‘Object identifier (OID) structure’’,
‘‘Object type (OT) structure’’, and ‘‘SCO OpenServer 64 bit counters’’.

2.2.15 Termios and termio interfaces

The termios interface is the preferred API for terminal management functions; the termios calls are
translated into ioctl calls that issue the appropriate commands for the given operation.

Applications should never directly issue ioctl commands to terminal devices, but should use the ter-
mios(S) functions instead. Binaries produced using the Release 5 compilers will get iBCS2-compati-
ble behavior when run on Release 6.

Source code from Release 5 will need to be changed to use the termios structure supported on
Release 6, which omits the c_line (line discipline) element supported on Release 5, and uses a dif-
ferent value for the number of elements in the control character (c_cc) array.

2.2.16 curses (libocurses) interface

On Release 6 and Release 5, the standard curses library is the UNIX System V Release 4 (SVR4)
curses library, libcurses.a. OSR5 ABI binary applications that use the standard curses libraries on
those systems will execute as expected on Release 6.

While all the same function names are supported and these functions all have the same semantics on
the two systems, there are slight differences in the:

• header files

• terminfo and termcap databases

These are detailed in the next few sections.

2.2.16.1 curses header files

On Release 6, the SVR4 curses interfaces are defined in /usr/lib/ocurses.h.

On Release 5, curses.h is a wrapper that reads in either of tcap.h or tinfo.h, depending on whether the
application is compiled with termcap or terminfo support (termcap is not supported on Release 6).
Since most applications are simply compiled with #include curses.h, this should not present a
compatibiliy problem unless the lower level header files are included directly.

62 OpenServer 6 Porting Guide

2.2.16.2 terminfo and termcap databases

These files define terminal characteristics and are used by various libraries and programs (for exam-
ple, the curses library routines and the vi editor) to perform screen management functions.

The location and format of the terminfo and termcap databases are the same on all systems.

There are no known compatibility impacts for these databases.

2.2.16.3 X/Open curses (formerly libstdcurses) library

This library (libocurses) is supported on Release 6, but not on Release 5.

2.2.17 BSD database management (libdbm and libndbm) interface

Release 5 provides database management routines in the libdbm and libndbm libraries. Release 5
binaries that use these libraries will load and run correctly on Release 6.

For more information on using BSD compatibility libraries on Release 6, see ‘‘BSD system libraries
and header files’’.

2.2.18 Encryption (libcrypt) interface

The libcrypt interface is documented on crypt(S). The crypt, encrypt, and setkey routines are also
declared in libgen and in libc.

2.2.19 Executable and Linking Format (libelf) interface

The libelf implementations on Release 5 and Release 6 are nearly identical, with the following excep-
tions:

• Release 6 provides an additional flag, ELF_C_IMPURE_WRITE, that can be passed to
elf_begin(ELF). Portable applications and applications targeted for Release 5 should not use this
flag, as it is not supported on Release 5.

• The nlist function is declared in libelf on Release 6 and libc on Release 5. For Release 5 applica-
tions run on Release 6, the Release 6 kernel uses the Release 5 libc.

The Release 6 libelf interface is documented on the Section ELF manual pages.

2.2.20 Graphic interfaces

• Graphical programs sometimes rely on Motif 2.x. This version of Motif is normally compatible
with Motif 1.2 (included with SCO OpenServer 6). In case problems do occur, you can try using
Lesstif (available from http://www.lesstif.org).

• A lot of graphical GNU programs use the xpm package, support for which is not provided by
SCO OpenServer 6. The best thing to do is download the xpm source and build it.

http://www.lesstif.org

A Guide to debug for dbx Users 63

3 A Guide to debug for dbx Users
This section details feature differences between dbx and debug, and offer help for those users who are
used to a dbx-style debugger. For simplicity of presentation, we concentrate on the command line and
do not discuss the differences between the graphical front-ends for the debuggers. Extra features
offered by debug are detailed in the debug(CP) manual page and the debug help command.

3.1 Starting debug

Two common methods of starting debug:

1. From the command line you can specify:

debug arglist

The arglist must contain an absolute or relative pathname to a binary file and the appropriate
arguments for that binary. Then, the debug internal command

run [-f]

starts execution of the binary.

2. If you start debug with no arglist, then enter these commands at the debug prompt to start exe-
cution:

debug> create pathname_to_binary [arg...]
debug> run [-f]

The important thing to remember when specifying the pathname to the binary is that the PATH vari-
able is not used to search for it; so, you must use a full pathname for any binary not in the current
working directory (or below).

3.2 Command Line Options

dbx option debug option Description Notes

corefile -c corefile File name of the core file to be
debugged

-r N/A Executes the object file and exits
the debugger only if no error
occurs

-x N/A Ignore cross-reference file when
initializing dbx

Not currently available in
debug.

64 OpenServer 6 Porting Guide

3.3 Setup

3.4 Configuration example

Here is a useful set of entries to put in $HOME/.debugrc to tailor debug commands and initial behav-
iour to be similar to dbx.

 #---- UW7 debug ~/.debugrc file for migrating from dbx style usage ----
 #
 # default cmdline editing
 set %mode “emacs”
 # where/stack trace
 alias w stack
 # Continue
 alias c run -f
 # swap +/- up/down for gdebug - depends on %frame_numbers
 alias up set %frame %frame +1; list -c 1
 alias down set %frame %frame -1 ; list -c 1
 # status
 alias st events
 #remove existing alias

-F N/A dbx assumes that file scoped
structure, union, enum defini-
tions with the same name are
identical

Unnecessary

-I dir -s path Search path(s) for source files Under debug this sets the glo-
bal path variable,
%global_path

-c file N/A Execute the dbx commands in the
file before reading from standard
input

debug offers the script internal
command to do this from the
debug prompt

-C++ N/A Assume C++ mode Set %lang to ‘‘C++’’ at the
debug prompt to override the
default value in %db_lang.

-C N/A Use C debugging only Set %lang to ‘‘C’’ at the debug
prompt to override the default
value in %db_lang.

dbx debug Description

$HOME/.dbxtrarc $HOME/.debugrc File containing commands that are exe-
cuted at debugger startup

dbx option debug option Description Notes

A Guide to debug for dbx Users 65

 alias unalias alias -r
 # breakpoints
 #alias b stop
 alias d delete
 alias dis disable
 alias di disable
 alias en enable
 # rerun - load and run
 alias load create
 unalias rr
 alias rr create -f none $* ; run -u main
 # general useful
 alias a alias
 unalias h; alias h history
 alias H help $* |$PAGER
 alias P $* |$PAGER
 alias mem dump -b
 alias echo {print -f “%s\n” $*; }
 #disassemble with as much info as poss
 set %dis_mode=”source”
 alias dasm dis
 # don’t follow any forked processes - does this actually work ??
 set %follow “none”
 set %thread_change=”ignore”
 #set %thread_change=”announce”
 # shutup signals we don’t normally care about
 signal -d -i sigcld sigalrm
 # Where to look for src
 set %global_path=”/tmp/vtcl”
 alias path {if ($# > 0) set %global_path $* ““; print %global_path; }
 #
 # User variables
 set $MALLOC_CHECKS=6
 set $MALLOC_STATS=6
 # into env
 alias EMC export $MALLOC_CHECKS ; stop malloc.c@checkmsg
 alias EMS export $MALLOC_STATS

3.5 General Tips

The following are general usage differences between dbx and debug:

• For help on any command or usage of debug, use the help command to display a list of commands
and internal help topics (such as for help on specific debug internal variables). Some examples:

help
help expr
help release
help %db_lang
help C++

66 OpenServer 6 Porting Guide

• debug internal variables are preceded with a % character. So %lang is used to identify the debug
internal variable for setting the current language.

• debug command line editing can be improved by switching it to vi or emacs mode by setting the
%mode variable (for example: set %mode=vi).

• The debug command line can have redirection symbols and pipes used with any command.
dbx only offers redirection with certain commands such as run and dump.

• You can specify breakpoints on static fns (or reference static data) but you must explicitly specify
the filename the fn/variable resides in in the expression or already have the debugger stopped in
the file in question.

stop malloc.c@checkmsg
stop file.c@static_fn
print file.c@static_data

• All signals are trapped by default (suppress sigcld, sigalrm):

signal -d -i sigcld sigalrm

and forked processes are followed by default.

{debug|create} -f none
run -f
set %follow “none”
release

• When a process is not loaded or a process is completed, many commands that are irrelevant to a
process are disabled along with those that are not. For example: listing a file, and listing
breakpoints.

• debug runs by default in its own X window; suppressable with -ic or by unsetting $DISPLAY; not
specifiable from defaults file so can tweak it permanently. You can use a shell alias; for example:

alias dbg=’debug -ic’

• In the command debug cmdline, the first token is a filename that is not searched for in PATH; i.e.,
it must be specified as an absolute (or relative) pathname if the binary is not in the current work-
ing directory. This also applies to the internal create command.

• Print “v” -> outputs “v” (quoted - instead of v)

• ^D doesn’t exit the debugger; use quit or exit.

• debug uses two expression parsers: one for the command line constructs and another for C/C++
expressions. The combination of the two can lead to unexpected effects and demand non-obvious
syntax (e.g., empty string inclusion).

• Aliases are set and removed in unique ways (that is, more like macro replacement than other
assignments). To set:

alias name list_of_replacement_tokens

A Guide to debug for dbx Users 67

To remove:

alias -r

• Substituting args are not expanded inside quoted strings or specifiable with brackets or parenthe-
ses (in disambiguating ${} forms):

$[0-9]
$*
$#

• In debug, use aliases and blocks (enclosed in brackets: {...}) to define user functions.

• By default debug will attempt to also debug forked child processes. The %follow system variable
controls this behaviour and should be set to none (from the default all) to disable this.

• The threads of control of a process that debug knows about can be displayed with the ps com-
mand and the current switched by setting the %proc system variable or the -p switch on many
commands.

Notification of thread state change (create, exit, suspend, continue, etc.) can be controlled
with the %thread_change variable. The default value is stop, indicating to print a message
and stop the thread if possible. To disable both notification and stopping set it to ignore.

3.6 Debugger Variables

The debug-specific variables are substantially different from those with special meaning for dbx.
There are four types of debug variables, each with a distinct purpose:

• ‘‘code’’ variables; variables defined by the code being debugged (unadorned name): var

• ‘‘system’’ variables; variables that affect or modify some aspect of debug behaviour: %var

• ‘‘user’’ variables; generic debug internal variables defined by the user to store temporary values:
$var

• environment variables are handled as a subset of user variables, and are defined by exporting
them: export $var

68 OpenServer 6 Porting Guide

3.7 Execution and Tracing Commands

dbx command debug command Description Notes

run [args] [< file-
name][>[> filename]]

run [-p proc_list][-bfr][-u
location]

Run the current program
being debugged

Debug treats the run com-
mand also as continue, so
by using run when the exe-
cution of a program has
been halted will continue
from that point. This is dif-
ferent from dbx’s run as it
restarts program. Note that
the redirection symbols in
debug can be used with any
command. Debug also
offers pipes.

rerun [args] [< file-
name][>[> filename]]

create [-f none | procs | all]
[-dr][-l start_loc]
[command_line]

Rerun the program and
append the arguments to the
previous arguments passed
to the program Debug’s cre-
ate command (with no argu-
ments) offers a similar
functionality to dbx’s rerun
command. Note that debug
does not append given argu-
ments with the create com-
mand, but treats it as a
request to debug a new pro-
gram.

setenv name value set [-p proc_list]
debug_or_user_var [=]
expr [,expr] export $user-
name

Set the value of an environ-
ment variable in the envi-
ronment of the debugged
program.

In debug, the set command
must be used with a user
variable to set the value
and then exported to the
environment of the
debugged program with the
export command. Note that
this has to be done before
the execution of the
debugged program.

unsetenv name N/A Unset the value of the vari-
able.

trace [inst][in routine][if
condition]
trace [inst] line-num-
ber|address [if condition]
trace routine [in
routine2][if condition]

(various) Display source lines (or
machine instructions) when
executed, display the argu-
ments and results of rou-
tines

There are a number of
ways of emulating the trace
functionality. Aliases can
be created on the variations
of: alias trace = onstop {
step }
debug variables %func,
%frame, etc. can be used
to determine the current
execution location.

A Guide to debug for dbx Users 69

trace [inst][change] vari-
able [in routine][if condi-
tion]
trace [inst] change
address [in routine][if
condition]
trace [inst] access vari-
able [in routine][if condi-
tion]
trace [inst] access address
[in routine][if condition]

(various) Display when changes (or
accesses) are made to vari-
ables or memory locations.

This functionality can be
reasonably matched by
debug’s stop command
used with expressions.

stop in routine [if condi-
tion]
stop [inst] access variable
[if condition]
stop [inst] [change]
address [if condition]
stop [inst] [change] vari-
able [if condition]
stop [inst] if condition
stop [inst] at
line_number|address [if
condition]
stop [inst] access address
[if condition]

stop [-p proc_list] [[-q] [-c
count] stop_expr]

Stop execution when execu-
tion reaches a given loca-
tion, or when a variable or
memory location is changed
or accessed.

All the various forms of the
dbx stop command can be
matched by the debug stop
command used with
expressions.

when [inst] at
line_number|address [if
condition] {command;
[command; ...]}
when in routine [if condi-
tion] {command; [com-
mand; ...]}
when [inst] condition
{command; [command; ...
]}
when [inst] change vari-
able [if condition] {com-
mand; [command; ...]}
when [inst] change
address [if condition]
{command; [command; ...
]}
when [inst] access vari-
able [if condition] {com-
mand; [command; ...]}
when [inst] access address
[if condition] {command;
[command; ...]}

stop [-p proc_list] [[-q] [-c
count] stop_expr [com-
mand]]

Execute a series of com-
mands when execution
reaches a given location,
when a condition is true, or
when a variable or memory
location is changed or
accessed.

dbx command debug command Description Notes

70 OpenServer 6 Porting Guide

status [> filename] events [-p proc_list]
[event_num ...]

List the user specified
events for the current pro-
gram (break points, etc..)
and their current status.

The debug events com-
mand also provides infor-
mation about system calls,
signals and exceptions)

delete event_num ... delete event_num ... The event corresponding to
event_num is removed.

Debug provides another
variation of this command
for deletion of event types.

disable event_num ... disable event_num ... Disable the specified
events.

Debug provides another
variation of this command
to disable event types.

enable event_num ... enable event_num ... Enable previously disabled
events.

Debug provides another
variation of this command
to enable event types.

catch num-
ber|signal_name

signal -d [signal]
signal [-p proc_list][[-q]
signal ... [cmd]]

Trap a specified signal.
Debug offers greater control
over signals. Refer to the
relevant documentation.

ignore num-
ber|signal_name

signal -d -i [signal]
signal [-p proc_list] [[-iq]
signal ... [cmd]]

Stop trapping a specified
signal.

Debug offers greater con-
trol over signals. Refer to
the relevant documenta-
tion. Note that the -i option
can be also used to re-
establish the default action
for a signal.

cont integer run [-p proc_list][-bfr][-u
location]

Continue execution from
where the program stopped.

cont signal_name kill [-p proc_list][signal]
followed by
run [-p proc_list][-bfr][-u
location]

Process continues as though
it received the given signal

Debug needs to have the
run command executed
after the kill command is
given.

skip [n] (alias) Continue execution from
where stopped. If n is speci-
fied, that many breakpoints
are ignored before the pro-
gram stops. If n is not
given, one breakpoint is
skipped.

This functionality can be
emulated with debug’s
onstop command, e.g. if
($# == 0) set $skip=1;
else set $skip=$1 +0;
onstop { if ($skip > 0) { set
$skip=$skip - 1; run } else
delete %thisevent}; run
Note that the “+0” is
required when no parame-
ters are passed to skip.

step [n] step [-p proc_list] [-bfq] [-
c count]

Execute a number of source
lines (default is 1)

Debug provides more con-
trol to the user for stepping.

dbx command debug command Description Notes

A Guide to debug for dbx Users 71

3.8 Printing Variables and Expressions

Please read debug(CP) or use the debug

help expr

next [n] step [-p proc_list] [-bfq] -o
[-c count]

Execute a number of source
lines (default is 1). If a line
contains a call to a proce-
dure or function the com-
mand does not stop at the
beginning of that block.
Debug provides more con-
trol to the user for stepping.
Note that there is a standard
alias, next, for debug.

return [procedure] run -r Continue until a return to
procedure is executed, or
until the current procedure
returns if none is specified.
Debug’s run -r continues
execution until a the return
address of the current func-
tion is reached. Note that
you cannot specify a proce-
dure name with the -r
option.

call procedure(parame-
ters)

(various) Execute the object code
associated with the named
procedure or function.

A call to a function or pro-
cedure under debug can be
done using any command
that allows an expression
for an argument. For exam-
ple: print procedure(a, b, c)
or set $MYRET=func-
tion(a, b).

jump line_number jump [-p proc_list] loca-
tion

Continue until a return to
procedure is executed, or
until the current procedure
returns if none is specified.

Debug’s jump command
can be used with any valid
location.

goto line_number run -u location Continue execution and
stop before the fist instruc-
tion at the specified line
number is executed.

Debug’s run command
with the -u option can be
used with any valid loca-
tion.

dbx command debug command Description Notes

72 OpenServer 6 Porting Guide

internal command for specific information about debug expressions.

dbx command debug command Description Notes

assign variable=expression set [-p proc_list] [-v]
debug_or_user_var [=] expr
[,expr...]
set [-p proc_list] [-v]
language_expression

Assign the value of
an expression to a
variable.

Debug’s set can be
used to evaluate any
language expression,
typically and assign-
ment.

assign register=expression
assign eax=6

print %eax=(void *)6 Assign the value of
an expression to a
register.

The type casting is
required; otherwise
debug returns a
warning which is not
otherwise suppress-
ible.

assign memloc=expression
assign 0x8049478=5

print *(int *)0x8049478=5 Assign the value of
an expression to a
memory location.

The type casting is
required; otherwise
debug returns a
warning which is not
otherwise suppress-
ible.

dump [procedure] [> file-
name]

functions [-s] [-p proc_list] [-o
object] [-f filename] [pattern]
symbols [-p proc_list] [-o object] [-
n filename] [-dfgltuv] [pattern]
Print the names and values of vari-
ables in a procedure.

Debug’s functions
and symbols com-
mands can provide
information to match
dbx’s dump com-
mand and more.

print expression [, expression
...]

print [-p proc_list] [-f format] [-v]
expr, ...

Print the expression. The -f format option
to debug’s print
command allows the
user to use a “C”
style format output
of the expression,
e.g. print -f
“0x%x\n” main

whatis expression whatis [-p proc_list] expr Print the declaration
of the expression.

Debug’s whatis
command provides
all known informa-
tion about the
expression.

which identifier N/A Print the full qualifi-
cation of the given
identifier.

Unavailable cross
reference informa-
tion required for this
command.

A Guide to debug for dbx Users 73

up [count]
down [count]

set %frame = frame_number Move the current
frame up and down
the stack.

Debug’s %frame
variable contains the
current frame num-
ber. By setting this
variable a user can
traverse the stack.
These can be aliased
with: alias up set
%frame = %frame +
1 alias down set
%frame = %frame -
1

where identifier stack [-p proc_list] [-f frame] [-c
count] [-a address] [-s stack]

Print the list of the
active procedures
and functions.
Debug’s stack com-
mand offers more
functionality that
dbx’s where com-
mand.

whereis identifier N/A Print the full qualifi-
cation of all the sym-
bols whose name
matches the given
identifier.

Unavailable cross
reference informa-
tion required for this
command.

dbxref [-i][-o
file][options][files]

N/A Generate the cross-
reference file for
dbx’s xref, whatis
and whereis com-
mands.

xref identifier N/A Print a cross-refer-
ence for the given
symbol. Unavail-
able cross reference
information required
for this command.

dbx command debug command Description Notes

74 OpenServer 6 Porting Guide

3.9 Accessing source files

3.10 Command Aliases

dbx command debug command Description Notes

/regular expression[/]
?regular expression[?]

list [-p proc_list] [-c count]
/regexp/
list [-p proc_list] [-c count]
?regexp?

Search forward or back-
ward in the current source
file for the given pattern.

In debug / and ? when
%mode is set to vi will
search forward and back-
ward in the command line
history.

edit [filename]
edit procedure_name
edit function_name

N/A Invoke an editor on file-
name or the current source
file if none is specified.

The shell command (!)
with the appropriate exe-
cutable can be used to edit
a file.

file [filename] set %list_file=filename Change the current source
file name to filename.

Debug’s current file is also
contained in %file

func [procedure/function] N/A Change the current func-
tion.

list .
list procedure/function
list [source_line number [,
source_line_number]]

list [-p proc_list] [-c count]
[thread
id@][file_name@][header
_file@]func_name
list [-p proc_list] [-c count]
[thread
id@][file_name@][header
_file@]line_num
list [-p proc_list] [-c count]

List the lines in the current
source file.

use directory_list set %path=”directory_list”
set
%global_path=”directory_
list”

Set the list of directories to
be searched when looking
for source files.

dbx command debug command Description Notes

alias
alias name name
alias name “string”
alias name (parameters)
“string”

alias name tokens ...
alias [name]

Establish a new alias. Debug alias parameters are
available as $1, $2, etc...
$# is the number of argu-
ments passed and $* repre-
sents all the arguments
passed.

unalias name alias -r name Remove the alias with the
given name.

A Guide to debug for dbx Users 75

set name [= expression] set [-p proc_list] [-v]
debug_or_user_var [=]
expr [,expr...

Define the values for
debugger variables.

Debug specific variables
are preceded with a %, e.g.
%file. User specific (and
environment) variables are
preceded with a $, e.g.
$DISPLAY.

unset name N/A Delete the debugger vari-
able associated with name.

dbx command debug command Description Notes

76 OpenServer 6 Porting Guide

3.11 Machine Level Commands

3.12 Miscellaneous Commands

dbx command debug command Description Notes

stepi step [-p proc_list] [-bfq] -i
[-c count]

Single step as in step, but
at a single machine
instruction.

Debug has a default alias
for this functionality, si.

nexti step [-p proc_list] [-bfq] -
io [-c count]

Single step as in next, but
at a single machine
instruction.

Debug has a default alias
for this functionality. ni.

regs regs [-p proc_list] Display the contents of the
register set.

fpregs regs [-p proc_list] Display the contents of the
register set. Debug dis-
play’s the floating point
registers only if they have
been used.

address, address/ [mode]
address / [count] [mode]

dump [-p proc_list] [-c
byte_count] [-b] expres-
sion

Print the contents of mem-
ory

Debug’s dump command
allows starting points to be
defined by expressions as
well as addresses. Debug’s
dump output is printed in
ASCII and hexadecimal.

dbx command debug command Description Notes

cc set %db_lang=”C” or set
%db_lang=”C++”

Toggle between C++ and C
output modes.

help [command] help
[string]

help [topic] Obtain a list of help topics
or help on a topic.

quit quit Exit the debugger. Debug’s quit kills all cre-
ated processes or releases
them if they had been
grabbed.

sh [command_line] !
command_line

! command_line !! Pass the command line to
the shell for execution.

Debug’s !! command exe-
cutes the last shell com-
mand.

source filename script [-q] filename Read debugger commands
from a file.

kill kill [-p proc_list] Kill the current or speci-
fied process. Debug’s kill
command can also be used
to send signals to a pro-
cess.

A Guide to debug for dbx Users 77

detach release [-s] [-p proc_list] Release the current pro-
cess. Debug’s release com-
mand allows the process to
be released in a stopped
state with the -s option.

exec filename (automatic) If the process being
debugged does an exec
system call, this tells the
debugger that a new sym-
bol table should be read in.

Debug is capable of debug-
ging several processes and
threads at the same time, so
this functionality is exe-
cuted automatically.

version version Print the version informa-
tion for the debugger.

dbx command debug command Description Notes

78 OpenServer 6 Porting Guide

3.13 Common tasks

These are perhaps less commonly used but usually still available in some form:

Task dbx cmd debug equiv

Breakpoints

setting b, break, bp stop

clearing d, del delete

showing status, st events

temp disable dis disable

reenable en enable

Single stepping

into fns s, step step, s

over fns n, next step -o, n, next

Running run, r run [-f]

rerunning process rerun, rr create [-f none]; run none

Continuing c, cont run [-f]

Viewing

print variables print print, p

dump memory mem, print dump locn

stack trace where stack [-c count]

Task debug equiv

Current Stack frame modify %frame system variable:
alias down set %frame = %frame - 1; list -
c 1
alias up set %frame = %frame + 1; list -c 1

Setting variables set v[=]value

Source

Specifying where the source files are %global_path - all processes
%path - for a single process
set -p <proc> %path whatever - after pro-
cess is running

A Guide to debug for dbx Users 79

Changing srcFile to Browse set %list_file filename

Execution

run to return fm current fn run -r

execute from an address jump loc

run upto address run -u loc

rerun current process create [-f none]; run [-f]

viewing/changing argv list rerun and specify a new command line

enabling command line editing set %mode vi
set %mode emacs
(emacs mode deficient - no handling arrow
keys; occasional dropout)

Displaying paged output (help) must pipe through pager:
... | more

Watchpoints not provided, but buildable with onstop
command

Task debug equiv

80 OpenServer 6 Porting Guide

	1 Porting SCO OpenServer 5 Applications to SCO OpenServer 6
	1.1 About porting SCO OpenServer 5 applications
	1.1.1 Compiler ABI modes: UDK and OSR5
	1.1.2 Mixed mode issues

	1.2 Tool sets supported
	1.3 Compiler option guidelines
	1.4 API issues
	1.5 C language dialect issues
	1.6 C++ language dialect issues
	1.7 Changes to the runtime environment
	1.7.1 Console Display Problems
	1.7.2 Device information
	1.7.3 Runtime commands
	1.7.4 Runtime access of system/data files
	1.7.5 NETbios/NETbeui
	1.7.6 XENIX 286 emulators

	1.8 Binary debugging
	1.8.1 Tracing system calls with truss
	1.8.2 Using the dynamic library tracing feature of the runtime linker
	1.8.3 Memory debugging with memtool
	1.8.4 Source debugging with debug

	1.9 Development System documentation

	2 Kernel and API Compatibility Notes
	2.1 Kernel compatibility
	2.1.1 Executable formats
	2.1.2 Error numbers
	2.1.2.1 Errors with different values
	2.1.2.2 System calls with different error returns

	2.1.3 Signals
	2.1.4 Core file generation
	2.1.5 CPU status information
	2.1.6 C2 Security (libprot) library
	2.1.6.1 OSR5 ABI Applications
	2.1.6.2 SVR5 ABI Applications

	2.1.7 System calls
	2.1.7.1 SUDS extension
	2.1.7.2 access(2)
	2.1.7.3 adjtime(2)
	2.1.7.4 execlp(2) / execvp(2)
	2.1.7.5 fcntl(2)
	2.1.7.6 getrlimit/setrlimit(2)
	2.1.7.7 libattach/libdetach(S)
	2.1.7.8 memcntl(2)
	2.1.7.9 mmap(2)
	2.1.7.10 mount(2)
	2.1.7.11 nice(2)
	2.1.7.12 paccess(S)
	2.1.7.13 pipe(2)
	2.1.7.14 poll(2)
	2.1.7.15 priocntl(2)
	2.1.7.16 probe(S)
	2.1.7.17 ptrace(2)
	2.1.7.18 setcontext(2)
	2.1.7.19 sysi86(2)
	2.1.7.20 sysinfo
	2.1.7.21 syssetconf
	2.1.7.22 uadmin(2)
	2.1.7.23 ulimit(2)
	2.1.7.24 waitid(2)
	2.1.7.25 xsetre[gu]id(S)

	2.2 API Compatibility
	2.2.1 Manual Pages
	2.2.2 C library (libc) interfaces
	2.2.2.1 tm structure
	2.2.2.2 confstr
	2.2.2.3 dlsym
	2.2.2.4 fnmatch
	2.2.2.5 ftw/nftw
	2.2.2.6 glob/globfree
	2.2.2.7 iconv
	2.2.2.8 isnan/isnand/isnanf
	2.2.2.9 jmp_buf
	2.2.2.10 mallinfo
	2.2.2.11 nl_langinfo
	2.2.2.12 passwd structure
	2.2.2.13 sigset_t
	2.2.2.14 sysconf
	2.2.2.15 ttyslot

	2.2.3 BSD library (libucb) interface
	2.2.4 Threads and asynchronous I/O (libthread) interfaces
	2.2.5 Network support library (libnsl) interfaces
	2.2.5.1 AUTH structure
	2.2.5.2 CLIENT structure
	2.2.5.3 Berkeley style client calls
	2.2.5.4 Portmapper
	2.2.5.5 Berkeley style service calls
	2.2.5.6 SVCXPRT structure

	2.2.6 Transport interface (XTI and TLI)
	2.2.7 Sockets interface
	2.2.7.1 Socket addressing
	2.2.7.2 accept
	2.2.7.3 bind
	2.2.7.4 connect
	2.2.7.5 ether_aton
	2.2.7.6 ether_hostton
	2.2.7.7 ether_line
	2.2.7.8 ether_ntoa
	2.2.7.9 ether_ntohost
	2.2.7.10 ftruncate/truncate
	2.2.7.11 getpeername/setpeername
	2.2.7.12 getsockname/setsockname
	2.2.7.13 getsockopt/setsockopt
	2.2.7.14 gettimeofday/settimeofday
	2.2.7.15 listen
	2.2.7.16 netgroup
	2.2.7.17 recv/recvfrom/recvmsg
	2.2.7.18 select
	2.2.7.19 send/sendto
	2.2.7.20 shutdown
	2.2.7.21 socket
	2.2.7.22 openlog

	2.2.8 Name resolution (libresolv) library routines
	2.2.9 File transfer protocol (ftp) interface
	2.2.10 STREAMS interface
	2.2.10.1 I_GETCLTIME
	2.2.10.2 I_RECVFD
	2.2.10.3 I_S_RECVFD
	2.2.10.4 I_SETSIG

	2.2.11 Event queue (libevent) interface
	2.2.12 SNMP (libsnmp) interface
	2.2.12.1 make_varbind
	2.2.12.2 parse_pdu

	2.2.13 SNMP I/O (libsnmpio) interface
	2.2.13.1 get_response
	2.2.13.2 send_request

	2.2.14 SMUX (libsmux) interface
	2.2.14.1 Object identifier (OID) structure
	2.2.14.2 Object type (OT) structure
	2.2.14.3 SCO OpenServer 64 bit counters
	2.2.14.4 Aggregate structure notes

	2.2.15 Termios and termio interfaces
	2.2.16 curses (libocurses) interface
	2.2.16.1 curses header files
	2.2.16.2 terminfo and termcap databases
	2.2.16.3 X/Open curses (formerly libstdcurses) library

	2.2.17 BSD database management (libdbm and libndbm) interface
	2.2.18 Encryption (libcrypt) interface
	2.2.19 Executable and Linking Format (libelf) interface
	2.2.20 Graphic interfaces

	3 A Guide to debug for dbx Users
	3.1 Starting debug
	3.2 Command Line Options
	3.3 Setup
	3.4 Configuration example
	3.5 General Tips
	3.6 Debugger Variables
	3.7 Execution and Tracing Commands
	3.8 Printing Variables and Expressions
	3.9 Accessing source files
	3.10 Command Aliases
	3.11 Machine Level Commands
	3.12 Miscellaneous Commands
	3.13 Common tasks

